
The build2 Packaging Guide

Copyright © 2014-2024 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.17, June 2024

This revision of the document describes the build2 toolchain 0.17.x series.

Table of Contents

................... 1Preface

.................. 11 Introduction

................ 31.1 Terminology

................ 32 Common Guidelines

............ 42.1 Setup the package repository

........ 42.1.1 Check if package repository already exists

.... 42.1.2 Use upstream repository name as package repository name

...... 42.1.3 Create package repository in personal workspace

....... 62.1.4 Initialize package repository with bdep new

....... 72.1.5 Add upstream repository as git submodule

....... 82.2 Create package and generate buildfile templates

........... 82.2.1 Decide on the package name

........ 122.2.2 Decide on the package source code layout

...... 152.2.3 Craft bdep new command line to create package

..... 192.2.4 Review and test auto-generated buildfile templates

............. 212.2.5 Create final package

............ 232.2.6 Adjust package version

....... 242.3 Fill package with source code and add dependencies

........ 242.3.1 Initialize package in build configurations

............. 252.3.2 Add dependencies

.......... 282.3.3 Fill with upstream source code

........ 302.4 Adjust project-wide and source buildfiles

...... 302.4.1 Adjust project-wide build system files in build/

........ 322.4.2 Adjust source subdirectory buildfiles

........... 322.4.3 Adjust header buildfile

......... 332.4.4 Adjust source buildfile: overview

......... 352.4.5 Adjust source buildfile: cleanup

........ 372.4.6 Adjust source buildfile: dependencies

....... 382.4.7 Adjust source buildfile: public headers

..... 382.4.8 Adjust source buildfile: sources, private headers

..... 402.4.9 Adjust source buildfile: build and export options

....... 432.4.10 Adjust source buildfile: symbol exporting

...... 452.4.11 Adjust source buildfile: shared library version

........ 452.4.12 Adjust source buildfile: executables

...... 472.4.13 Adjust source buildfile: extra requirements

............. 482.4.14 Test library build

............... 482.5 Make smoke test

.... 492.5.1 Adjust project-wide build system files in tests/build/

........ 492.5.2 Convert generated test to library smoke test

........... 502.5.3 Make smoke test: executables

iRevision 0.17, June 2024 The build2 Packaging Guide

Table of Contents

................ 512.5.4 Test locally

............. 522.5.5 Test locally: installation

............. 522.5.6 Test locally: distribution

............. 532.5.7 Commit and test with CI

........... 542.6 Replace smoke test with upstream tests

.......... 542.6.1 Understand how upstream tests work

.......... 562.6.2 Convert smoke test to upstream tests

................ 572.6.3 Test locally

............. 572.6.4 Commit and test with CI

.......... 572.7 Add upstream examples, benchmarks, if any

......... 582.8 Adjust root files (buildfile, manifest, etc)

............. 582.8.1 Adjust root buildfile

........ 592.8.2 Adjust root buildfile: other subdirectories

......... 612.8.3 Adjust root buildfile: commit and test

.............. 622.8.4 Adjust manifest

........... 632.8.5 Adjust manifest: summary

........... 642.8.6 Adjust manifest: license

.......... 642.8.7 Adjust manifest: commit and test

........... 642.8.8 Adjust PACKAGE-README.md

........... 652.9 Adjust package repository README.md

............... 672.10 Release and publish

............ 672.10.1 Transfer package repository

............. 682.10.2 Release final version

............. 682.10.3 Publish released version

............. 692.11 Package version management

............... 702.11.1 New revision

............... 712.11.2 New version

.......... 722.11.3 New version: create new work branch

........... 722.11.4 New version: open new version

........ 732.11.5 New version: update upstream submodule

......... 732.11.6 New version: review upstream changes

............ 742.11.7 New version: layout changes

.......... 742.11.8 New version: new/old dependencies

.......... 742.11.9 New version: new/old source files

......... 742.11.10 New version: changes to build system

....... 742.11.11 New version: other new/old files/subdirectories

.... 752.11.12 New version: review manifest and PACKAGE-README.md

........ 752.11.13 New version: review repository README.md

........ 752.11.14 New version: review/fix accumulated issues

......... 752.11.15 New version: test locally and with CI

......... 752.11.16 New version: merge, release, and publish

........ 762.11.17 New version/revision in old release series

.................. 763 What Not to Do

Revision 0.17, June 2024ii The build2 Packaging Guide

Table of Contents

....... 763.1 Don’t write buildfiles from scratch, use bdep-new

........ 773.2 Avoid fixing upstream issues in the build2 package

.......... 773.3 Avoid changing upstream source code layout

........ 773.4 Don’t make library header-only if it can be compiled

.............. 783.5 Don’t bundle dependencies

........ 793.6 Don’t build your main targets in the root buildfile

.......... 813.7 Don’t make extensive changes in a revision

................. 814 Packaging HOWTO

........... 814.1 How do I patch upstream source code?

......... 814.1.1 Modifying upstream source code manually

........ 824.1.2 Modifying upstream source code during build

..... 834.1.3 Modifying upstream source code with C/C++ preprocessor

......... 844.2 How do I deal with bad header inclusion practice?

....... 864.3 How do I handle extra header installation subdirectory?

......... 874.4 How do I handle headers without an extension?

......... 884.5 How do I expose extra debug macros of a library?

.................. 895 Packaging FAQ

................ 895.1 Publishing FAQ

....... 905.1.1 Why is my package in alpha rather than stable?

...... 905.1.2 Where to publish if package requires staged toolchain?

..... 915.1.3 Why "project owner authentication failed" while publishing?

iiiRevision 0.17, June 2024 The build2 Packaging Guide

Table of Contents

Preface

This document provides guidelines for converting third-party C/C++ projects to the build2
build system and making them available as packages from cppget.org, the build2 community’s

central package repository. For additional information, including documentation for individual

build2 toolchain components, man pages, HOWTOs, etc., refer to the project Documentation

page.

1 Introduction

The aim of this guide is to ease the conversion of third-party C/C++ projects to the build2
build system and publishing them to the cppget.org package repository by codifying the best

practices and techniques. By following the presented guidelines you will also make it easier for

others to review your work and help with ongoing maintenance.

A build2-based project can only consume packages that use the build2 build system (with

the exception of system-installed packages). In other words, there is no support for "wrapping" or

otherwise adapting third-party projects’ existing build systems. While replacing the build system

unquestionably requires more work upfront, the build2 project’s experience is that the

long-term benefits of this effort are well justified (see How does build2 compare to other

package managers? for details).

The primary focus of this guide is existing C/C++ projects that use a different build system and

that are maintained by a third-party, which we will refer to as upstream. Unless upstream is

willing to incorporate support for build2 directly into their repository, such projects are

normally packaged for build2 in a separate git repository under the github.com/build2-pack­

aging organization. Note, however, that many of the presented guidelines are also applicable

when converting your own projects (that is, where you are the upstream) as well as projects that

use languages other than C or C++.

Most C/C++ packages that are published to cppget.org are either libraries or executables (projects

that provide both are normally split into several packages) with libraries being in the strong

majority. Libraries are also generally more difficult to build correctly. As a result, this guide uses

libraries as a baseline. In most cases, a library-specific step is easily distinguished as such and can

be skipped when dealing with executables. And in cases where a more nuanced change is

required, a note will be provided.

At the high-level, packaging a third-party project involves the following steps:

1. Create the git repository and import upstream source code.

2. Generate buildfile templates that match upstream layout.

3. Tweak the generated buildfiles to match upstream build.

1Revision 0.17, June 2024 The build2 Packaging Guide

Preface

https://cppget.org/
https://build2.org/doc.xhtml
https://cppget.org/
https://build2.org/faq.xhtml#why-syspkg
https://build2.org/faq.xhtml#why-package-managers
https://build2.org/faq.xhtml#why-package-managers
https://github.com/build2-packaging
https://github.com/build2-packaging
https://cppget.org/

4. Test locally and using the build2 CI service.

5. Release and publish the package to cppget.org.

Once this process is completed and the package is published, new releases normally require a

small amount of work provided there are no drastic changes in the upstream layout or build. The

sequence of steps for a new release would typical look like this:

1. Add new and/or remove old upstream source code, if any.

2. Tweak buildfiles to match changes to upstream build, if any.

3. Test locally and using the build2 CI service.

4. Release and publish the package to cppget.org.

While packaging a simple library or executable is relatively straightforward, the C and C++

languages and their ecosystems are infamous for a large amount of variability in the platforms,

compilers, source code layouts, and build systems used. This leads to what looks like an endless

list of special considerations that are only applicable in certain, more complex cases.

As result, the presented guidelines are divided into four chapters: Common Guidelines cover

steps that are applicable to most packaging efforts. As mentioned earlier, these steps will assume

packaging a library but they should be easy to adapt to executables. This chapter is followed by

What Not to Do which covers the common packaging mistakes and omissions. These are unfortu­

nately relatively common because experience with other build systems often does not translate

directly to build2 and some techniques (such as header-only libraries) are discouraged. The last

two chapters are HOWTO and FAQ. The former covers the above-mentioned long list of special

considerations that are only applicable in certain cases while the latter answer frequent packag­

ing-related questions.

Besides the presented guidelines, you may also find the existing packages found in

github.com/build2-packaging a good source of example material. The repositories pinned to the

front page are the recommended starting point.

This guide assumes familiarity with the build2 toolchain. At the minimum you should have

read through The build2 Toolchain Introduction and the Introduction chapter in the build

system manual. Ideally, you should also have some experience using build2 in your own

projects.

In this guide we will only show the UNIX version of the commands. In most cases making a

Windows version is a simple matter of adjusting paths and, if used, line continuations. And where

this is not the case a note will be provided showing the equivalent Windows command.

Revision 0.17, June 20242 The build2 Packaging Guide

1 Introduction

https://ci.cppget.org/
https://cppget.org/
https://ci.cppget.org/
https://cppget.org/
https://github.com/build2-packaging

1.1 Terminology

We use the term upstream to refer collectively to the third-party project as well as to its authors.

For example, we may say, "upstream does not use semver" meaning that the upstream project

does not use semver for versioning. Or we may say, "upstream released a new version" meaning

that the upstream project’s authors released a new version.

We will often use upstream as a qualifier to refer to a specific part of the upstream project.

Commonly used qualified terms like this include:

upstream repository

The version control (normally git) repository of the third-party project.

upstream source code

The C/C++ source code that constitutes the third-party project.

upstream layout

The directory structure and location of source code in the third-party project.

upstream build system

The equivalents of buildfiles that are used by the third-party project to build its source

code, run tests, etc. For example, if upstream uses CMake, then all the CMakeLists.txt,

*.cmake, etc., files will constitute its build system.

To avoid confusion, in this guide we will always use the term project to refer to upstream and

package to refer to its build2 conversion, even though we would normally call our own

build2-based work a project, not a package (see Project Structure for details on the build2

terminology in this area). Some commonly used build2-side terms in this guide include:

package git repository

The git repository that hosts the package of the upstream project.

multi-package repository

Sometimes it makes sense to split the upstream project into multiple build2 packages (for

example, a library and an executable). In this case the package repository structure must

become multi-package.

2 Common Guidelines

This chapter describes the recommended sequence of steps for packaging a third-party project for

build2 with the end-goal of publishing it to the cppget.org package repository.

3Revision 0.17, June 2024 The build2 Packaging Guide

2 Common Guidelines

https://cppget.org/

2.1 Setup the package repository

This section covers the creation of the package git repository and the importation of the

upstream source code.

2.1.1 Check if package repository already exists

Before deciding to package a third-party project you have presumably checked on cppget.org if

someone has already packaged it. There are several other places that make sense to check as well:

queue.cppget.org contains packages that have been submitted but not yet published.

queue.stage.build2.org contains packages that have been submitted but can only be

published after the next release of the build2 toolchain (see Where to publish if package

requires staged toolchain? for background).

github.com/build2-packaging contains all the third-party package repositories. Someone

could already be working on the package but haven’t yet published it.

github.com/build2-packaging/WISHLIST contains as issues projects that people wish were

packaged. These may contain offers to collaborate or announcements of ongoing work.

In all these cases you should be able to locate the package git repository and/or connect with

others in order to collaborate on the packaging work. If the existing effort looks abandoned (for

example, there hasn’t been any progress for a while and the existing maintainer doesn’t respond)

and you would like to take over the package, get in touch.

2.1.2 Use upstream repository name as package repository name

It is almost always best to use the upstream repository name as the package repository name. If

there is no upstream repository (for example, because the project doesn’t use a version control

system), the name used in the source archive distribution would be the natural fallback choice.

See Decide on the package name for the complete picture on choosing names.

2.1.3 Create package repository in personal workspace

For a third-party project, the end result that we are aiming for is a package repository under the

github.com/build2-packaging organization.

We require all the third-party projects that are published to cppget.org to be under the

github.com/build2-packaging organization in order to ensure some continuity in case the original

maintainer loses interest, etc. You will still be the owner of the repository and by hosting your

packaging efforts under this organization (as opposed to, say, your personal workspace) you

make it easier for others to discover your work and to contribute to the package maintenance.

Revision 0.17, June 20244 The build2 Packaging Guide

2.1 Setup the package repository

https://cppget.org/
https://queue.cppget.org/
https://queue.stage.build2.org/
https://github.com/build2-packaging
https://github.com/build2-packaging/WISHLIST/issues
https://build2.org/community.xhtml#help
https://github.com/build2-packaging
https://cppget.org/
https://github.com/build2-packaging

Note that this requirement does not apply to your own projects (that is, where you are the

upstream) and where the build2 support is normally part of the upstream repository.

Finally, a note on the use of git and GitHub: if for some reason you are unable to use either, get

in touch to discuss alternatives.

However, the recommended approach is to start with a repository in your personal workspace and

then, when it is ready or in a reasonably complete state, transfer it to github.com/build2-packag­

ing. This gives you the freedom to make destructive changes to the repository (including deleting

it and starting over) during the initial packaging work. It also removes the pressure to perform:

you can give it a try and if things turn out more difficult than you expected, you can just drop the

repository.

For repositories under github.com/build2-packaging the master/main branch is protected: it

cannot be deleted and its commit history cannot be overwritten with a forced push.

While you can use any name for a repository under the personal workspace, under

github.com/build2-packaging it should follow the Use upstream repository name as package

repository name guideline. In particular, there should be no prefixes like build2- or suffixes

like -package. If the repository under your personal workspace does not follow this guideline,

you will need to rename it before transferring it to the github.com/build2-packaging organization.

There is one potential problem with this approach: it is possible that several people will start

working on the same third-party project without being aware of each other’s efforts. If the project

you are packaging is relatively small and you don’t expect it to take more than a day or two, then

this is probably not worth worrying about. For bigger projects, however, it makes sense to

announce your work by creating (or updating) the corresponding issue in

github.com/build2-packaging/WISHLIST.

To put it all together, the recommended sequence of actions for this step:

1. Create a new empty repository under your personal workspace from the GitHub UI.

2. Set the repository description to build2 package for <name>, where <name> is the

third-party project name.

3. Make the repository public (otherwise you won’t be able to CI it).

4. Don’t automatically add any files (README, LICENSE, etc).

5. Clone the empty repository to your machine (using the SSH protocol).

Since this is your personal repository, you can do the initial work directly in master/main or in

a separate branch, it’s up to you.

As a running example, let’s assume we want to package a library called foo whose upstream

repository is at https://github.com/<upstream>/foo.git. We have created its

package repository at https://github.com/<personal>/foo.git (with the build2

5Revision 0.17, June 2024 The build2 Packaging Guide

2.1.3 Create package repository in personal workspace

https://build2.org/community.xhtml#help
https://build2.org/community.xhtml#help
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging/WISHLIST

package for foo description) and can now clone it:

$ git clone git@github.com:<personal>/foo.git

2.1.4 Initialize package repository with bdep new

Change to the root directory of the package repository that you have cloned in the previous step

and run (continuing with our foo example):

$ cd foo/ # Change to the package repository root.
$ bdep new --type empty,third-party
$ tree -a .
./
|-- .bdep/
|Â Â ·-- ...
|-- .git/
|Â Â ·-- ...
|-- .gitattributes
|-- .gitignore
|-- README.md
·-- repositories.manifest

We use the special third-party sub-option which is meant for converting third-party projects

to build2. See bdep-new(1) for details.

This command creates a number of files in the root of the repository:

README.md

This is the repository README.md. We will discuss the recommended content for this file

later.

repositories.manifest

This file specifies the repositories from which this project will obtain its dependencies (see

Adding and Removing Dependencies). If the project you are packaging has no dependen­

cies, then you can safely remove this file (it’s easy to add later if this changes). And for

projects that do have dependencies we will discuss the appropriate changes to this file later.

.gitattributes and .gitignore

These are the git infrastructure files for the repository. You shouldn’t normally need to

change anything in them at this stage (see the comments inside for details).

Next add and commit these files:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Initialize package repository"

Revision 0.17, June 20246 The build2 Packaging Guide

2.1.4 Initialize package repository with bdep new

In these guidelines we will be using the package repository setup that is capable of having multi­

ple packages (referred to as multi-package repository). This is recommended even for upstream

projects that only provides a single package because it gives us the flexibility of adding new

packages at a later stage without having to perform a major restructuring of our repository.

Note also that upstream providing multiple packages is not the only reason we may end up having

multiple build2 packages. Another common reason is factoring tests into a separate package

due to a dependency on a testing framework (see How do I handle tests that have extra dependen­

cies? for background and details). While upstream adding new packages may not be very

common, upstream deciding to use a testing framework is a lot more plausible.

The only notable drawback of using a multi-package setup with a single package is the extra

subdirectory for the package and a few extra files (such as packages.manifest that lists the

packages) in the root of the repository. If you are certain that the project that you are converting is

unlikely to have multiple packages (for example, because you are the upstream) and won’t need

extra dependencies for its tests (a reasonable assumption for a C project), then you could instead

go with the single-package repository where the repository root is the package root. See

bdep-new(1) for details on how to initialize such a repository. In this guide, however, we will

continue to assume a multi-package repository setup.

2.1.5 Add upstream repository as git submodule

If the third-party project is available from a git repository, then the recommended approach is to

use the git submodule mechanism to make the upstream source code available inside the

package repository, customarily in a subdirectory called upstream/.

While git submodules receive much criticism, in our case we use them exactly as intended: to

select and track specific (release) commits of an external project. As a result, there is nothing

tricky about their use for our purpose and all the relevant commands will be provided and

explained, in case you are not familiar with this git mechanism.

Given the upstream repository URL, to add it as a submodule, run the following command from

the package repository root (continuing with our foo example):

$ cd foo/ # Change to the package repository root.
$ git submodule add https://github.com/<upstream>/foo.git upstream

You should prefer https:// over git:// for the upstream repository URL since the git://

protocol may not be accessible from all networks. Naturally, never use a URL that requires

authentication, for example, SSH (SSH URLs start with git@github.com for GitHub).

Besides the repository URL, you also need the commit of the upstream release which you will be

packaging. It is common practice to tag releases so the upstream tags would be the first place to

check. Failing that, you can always use the commit id.

7Revision 0.17, June 2024 The build2 Packaging Guide

2.1.5 Add upstream repository as git submodule

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

Assuming the upstream release tag you are interested in is called vX.Y.Z, to update the

upstream submodule to point to this release commit, run the following commands:

$ cd upstream/
$ git checkout vX.Y.Z
$ cd ../

Then add and commit these changes:

$ git add .
$ git status
$ git commit -m "Add upstream submodule, vX.Y.Z"

Now we have all the upstream source code for the version that we are packaging available in the

upstream/ subdirectory of our repository.

The plan is to then use symbolic links (symlinks) to non-invasively overlay the build2-related

files (buildfile, manifest, etc) with the upstream source code, if necessary adjusting

upstream structure to split it into multiple packages and/or to better align with the source/output

layouts recommended by build2 (see Using Symlinks in build2 Projects for background and

rationale). But before we can start adding symlinks to the upstream source (and other files like

README, LICENSE, etc), we need to generate the buildfile templates that match the

upstream source code layout. This is the subject of the next section.

While on UNIX-like operating systems symlinks are in widespread use, on Windows it’s a niche

feature that unfortunately could be cumbersome to use (see Symlinks and Windows for details).

However, the flexibility afforded by symlinks when packaging third-party projects is unmatched

by any other mechanism and we therefore use them despite potentially sub-optimal packaging

experience on Windows.

2.2 Create package and generate buildfile templates

This section covers the addition of the package to the repository we have prepared in the previous

steps and the generation of the buildfile templates that match the upstream source code

layout.

2.2.1 Decide on the package name

While choosing the package repository name was pretty straightforward, things get less clear cut

when it comes to the package name.

If you need a refresher on the distinction between projects and packages, see Terminology.

Revision 0.17, June 20248 The build2 Packaging Guide

2.2 Create package and generate buildfile templates

https://build2.org/article/symlinks.xhtml
https://build2.org/article/symlinks.xhtml#windows

Picking a name for a package that provides an executable is still relatively straightforward: you

should use the upstream name (which is usually the same as the upstream project name) unless

there is a good reason to deviate. One recommended place to check before deciding on a name is

the Debian package repository. If their package name differs from upstream, then there is likely a

good reason for that and it is worth trying to understand what it is.

Tip: when trying to find the corresponding Debian package, search for the executable file name in

the package contents if you cannot find the package by its upstream name. Also consider search­

ing in the unstable distribution in addition to stable for newer packages.

Picking a name for a package that provides a library is where things can get more complicated.

While all the recommendations that have been listed for executables apply equally to libraries,

there are additional considerations.

In build2 we recommend (but not require) that new library projects use a name that starts with

lib in order to easily distinguish them from executables and avoid any clashes, potential in the

future (see Canonical Project Structure for details). To illustrate the problem, consider the zstd
project which provides a library and an executable. In upstream repository both are part of the

same codebase that doesn’t try to separate them into packages so that, for example, library could

be used without downloading and building the executable. In build2, however, we do need to

split them into two separate packages and both packages cannot be called zstd. So we call them

zstd and libzstd.

If you are familiar with the Debian package naming policy, you will undoubtedly recognize this

approach. In Debian all the library packages (with very few exceptions) start with the lib prefix.

So when searching for an upstream name in the Debian package repository make sure to prefix it

with lib (unless it already starts with this prefix, of course).

This brings the question of what to do about third-party libraries: should we add the lib prefix to

the package name if it’s not already there? Unfortunately, there is no clear cut answer and

whichever decision you make, there will be drawbacks. Specifically, if you add the lib prefix,

the main drawback is that the package name now deviates from the upstream name and if the

project maintainer ever decides to add build2 support to the upstream repository, there could be

substantial friction. On the other hand, if you don’t add the lib prefix, then you will always run

the risk of a future clash with an executable name. And, as was illustrated with the zstd
example, a late addition of an executable won’t necessarily cause any issues to upstream. As a

result, we don’t have a hard requirement for the lib prefix unless there is already an executable

that would cause the clash (this applies even if it’s not being packaged yet or is provided by an

unrelated project). If you don’t have a strong preference, we recommend that you add the lib
prefix (unless it is already there). In particular, this will free you from having to check for any

potential clashes. See How should I name packages when packaging third-party projects? for

additional background and details.

9Revision 0.17, June 2024 The build2 Packaging Guide

2.2.1 Decide on the package name

https://packages.debian.org/
https://packages.debian.org/
https://github.com/build2/HOWTO/blob/master/entries/name-packages-in-project.md

To build some intuition for choosing package names, let’s consider several real examples. We

start with executables:

 upstream | upstream | Debian | build2 package| build2
project name|executable name|package name|repository name|package name
------------+---------------+------------+---------------+------------
byacc byacc byacc byacc byacc
sqlite sqlite3 sqlite3 sqlite sqlite3
vim xxd xxd xxd xxd
OpenBSD m4 - openbsd-m4 openbsd-m4
qtbase 5 moc qtbase5-\ Qt5 Qt5Moc
 dev-tools
qtbase 6 moc qt6-base-\ Qt6 Qt6Moc
 dev-tools

The examples are arranged from the most straightforward naming to the least. The last two exam­

ples show that sometimes, after carefully considering upstream naming, you nevertheless have no

choice but to ignore it and forge your own path.

Next let’s look at library examples. Notice that some use the same build2 package repository

name as the executables above. This means they are part of the same multi-package repository.

 upstream | upstream | Debian | build2 package| build2
project name|library name |package name|repository name|package name
------------+---------------+------------+---------------+------------
libevent libevent libevent libevent libevent
brotli brotli libbrotli brotli libbrotli
zlib zlib zlib zlib libz
sqlite libsqlite3 libsqlite3 sqlite libsqlite3
libsig\ libsigc++ libsigc++ libsig\ libsigc++
cplusplus cplusplus
qtbase 5 QtCore qtbase5-dev Qt5 libQt5Core
qtbase 6 QtCore qt6-base-dev Qt6 libQt6Core

If an upstream project is just a single library, then the project name is normally the same as the

library name (but there are exceptions, like libsigcplusplus in the above table). However,

when looking at the upstream repository that contains multiple components (libraries and/or

executables, like qtcore in the above example), it may not be immediately obvious what the

upstream’s library names are. In such cases, the corresponding Debian packages can really help

clarify the situation. Failing that, look into the existing build system. In particular, if it generates

the pkg-config file, then the name of this file is usually the upstream library name.

Looking at the names of the library binaries is less helpful because on UNIX-like systems they

must start with the lib prefix. And on Windows the names of library binaries often embed extra

information (static/import, debug/release, etc) and may not correspond directly to the library

name.

Revision 0.17, June 202410 The build2 Packaging Guide

2.2.1 Decide on the package name

And, speaking of multiple components, if you realize the upstream project provides multiple

libraries and/or executables, then you need to decide whether to split them into separate build2

packages and if so, how. Here, again, the corresponding Debian packages can be a good reference

point. Note, however, that we often deviate from Debian’s splits, especially when it comes to

libraries. Such differences are usually due to Debian focusing on binary packages while in

build2 we are focusing on source packages.

To give a few examples, libevent shown in the above table provides several libraries

(libevent-core, libevent-extra, etc) and in Debian it is actually split into several

binary packages along these lines. In build2, however, there is a single source package that

provides all these libraries with everything except libevent-core being optional. An

example which shows the decision made in a different direction would be the Boost libraries: in

Debian all the header-only Boost libraries are bundled into a single package while in build2
they are all separate packages.

The overall criteria here can be stated as follows: if a small family of libraries provide compli­

mentary functionality (like libevent), then we put them all into a single package, usually

making the additional functionality optional. However, if the libraries are independent (like

Boost) or provide alternative rather than complimentary functionality (for example, like different

backends in imgui), then we make them separate packages. Note that we never bundle an

executable and a (public) library in a single package (because, when consumed, they usually

require different dependency types: build-time vs run-time).

Note also that while it’s a good idea to decide on the package split and all the package names

upfront to avoid surprises later, you don’t have to actually provide all the packages right away.

For example, if upstream provides a library and an executable (like zstd), you can start with the

library and the executable package can be added later (potentially by someone else).

In the "library and executable" case, if you plan to package both, the sensible strategy is to first

completely package the library stopping short of releasing and publishing, then repeat the same

process to package the executable, and finally release and publish both.

Admittedly, the recommendations in this section are all a bit fuzzy and one can choose different

names or different package splits that could all seem reasonable. If you are unsure how to split

the upstream project or what names to use, get in touch to discuss the alternatives. It can be quite

painful to change these things after you have completed the remaining packaging steps.

Continuing with our foo example, we will follow the above recommendation and call the library

package libfoo.

11Revision 0.17, June 2024 The build2 Packaging Guide

2.2.1 Decide on the package name

https://build2.org/community.xhtml#help

2.2.2 Decide on the package source code layout

Another aspect we need to decide on is the source code layout inside the package. Here we want

to stay as close to the upstream layout as possible unless there are valid reasons to deviate.

Staying close has the best chance of giving us a build without any compile errors since the header

inclusion in the project can be sensitive to this layout. This also makes it easier for upstream to

adopt the build2 build.

Sometimes, however, there are good reasons for deviating from upstream, especially in cases

where upstream is clearly following bad practices, for example including generically-named

public headers without the library name as a subdirectory prefix. If you do decide to change the

layout, it’s usually less disruptive (to the build) to rearrange things at the outer levels than at the

inner. For example, it should normally be possible to move/rename the top-level tests/ direc­

tory or to place the library source files into a subdirectory.

Our overall plan is to create the initial layout and buildfile templates automatically using

bdep-new(1) in the --package mode, then "fill" the package with upstream source code

using symlinks, and finish off with tweaking the generated buildfiles to match the upstream

build.

The main rationale for using bdep-new(1) instead of doing everything by hand is that there

are many nuances in getting the build right and auto-generated buildfiles had years of

refinement and fine-tuning. The familiar structure also makes it easier for others to understand

your build, for example while reviewing your package submission or helping out with mainte­

nance.

The bdep-new(1) command supports a wide variety of source layouts. While it may take a bit

of time to understand the customization points necessary to achieve the desired layout for your

first package, this experience will pay off in spades when you work on converting subsequent

packages.

And so the focus of the following several steps is to iteratively discover the bdep-new(1)

command line that best approximates the upstream layout. The recommended procedure is as

follows:

1. Study the upstream source layout and existing build system.

2. Craft and execute the bdep-new(1) command line necessary to achieve the upstream

layout.

3. Study the auto-generated buildfiles for things that don’t fit and need to change. But

don’t rush to start manually editing the result. First get an overview of the required changes

and then check if it’s possible to achieve these changes automatically using one of

bdep-new(1) sub-options. If that’s the case, delete the package, and restart from step 2.

Revision 0.17, June 202412 The build2 Packaging Guide

2.2.2 Decide on the package source code layout

This and the following two sections discuss each of these steps in more detail and also look at

some examples.

The first step above is to study the upstream project in order to understand where the various

parts are (headers, sources, etc) and how they are built. Things that can help here include:

Read through the existing build system definitions.

Try to build the project using the existing build system.

Try to install the project using the existing build system.

Look into the Debian package contents to see if there are any differences with regards to the

installation locations.

If while studying the upstream build system you notice other requirements, for example, the need

to compile source files other than C/C++ (such as Objective-C/C++, assembler, etc) or the need

to generate files from .in templates (or their .cmake/.meson equivalents), and are wondering

how they would be handled in the build2 build, see the Adjust source buildfile: extra

requirements step for a collection of pointers.

For libraries, the first key pieces of information we need to find is how the public headers are

included and where they are installed. The two common good practices is to either include the

public headers with a library name as a subdirectory, for example,

#include <foo/util.h>, or to include the library name into each public header name, for

example, #include <foo-util.h> or #include <foo.h> (in the last example the

header name is the library name itself, which is also fairly common). Unfortunately, there is also

a fairly common bad practice: having generically named headers (such as util.h) included

without the library name as a subdirectory.

The reason this is a bad practice is that libraries that have such headers cannot coexist, neither in

the same build nor when installed. See How do I deal with bad header inclusion practice? if you

encounter such a case. See Canonical Project Structure for additional background and details.

Where should we look to get this information? While the library source files sound like a natural

place, oftentimes they include own headers with the "" style inclusion, either because the headers

are in the same directory or because the library build arranges for them to be found this way with

additional header search paths. As a result, a better place to look could be the library’s examples

and/or tests. Some libraries also describe which headers they provide and how to include them in

their documentation.

The way public headers are included normally determines where they are installed. If they are

included with a subdirectory, then they are normally installed into the same subdirectory in, say,

/usr/include/. Continuing with the above example, a header that is included as

<foo/util.h> would normally be installed as /usr/include/foo/util.h. On the

other hand, if the library name is part of the header name, then the headers are usually (but not

always) installed directly into, say, /usr/include/, for example as

13Revision 0.17, June 2024 The build2 Packaging Guide

2.2.2 Decide on the package source code layout

/usr/include/foo-util.h.

While these are the commonly used installation schemes, there are deviations. In particular, in

both cases upstream may choose to add an additional subdirectory when installing (so the above

examples will instead end up with, say, /usr/include/foo-v1/foo/util.h and

/usr/include/foo-v1/sub/foo-util.h). See How do I handle extra header installa­

tion subdirectory? if you encounter such a case.

The inclusion scheme would normally also be recreated in the upstream source code layout. In

particular, if upstream includes public headers with a subdirectory prefix, then this subdirectory

would normally also be present in the upstream layout so that such a header can be included from

the upstream codebase directly. As an example, let’s say we determined that public headers of

libfoo are included with the foo/ subdirectory, such as <foo/util.hpp>. One of the

typical upstream layouts for such a library would look like this:

$ tree upstream/
upstream/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- util.hpp
·-- src/
 |-- priv.hpp
 ·-- util.cpp

Notice how the util.hpp header is in the foo/ subdirectory rather than in include/

directly.

The second key piece of information we need to find is whether and, if so, how the public headers

and sources are split. For instance, in the above example, we can see that public headers go into

include/ while sources and private headers go into src/. But they could also be combined in

the same directory, for example, as in the following layout:

upstream/
·-- foo/
 |-- priv.hpp
 |-- util.cpp
 ·-- util.hpp

In multi-package projects, for example, those that provide both a library and an executable, you

would also want to understand how the sources are split between the packages.

If the headers and sources are split into different directories, then the source directory may or may

not have the inclusion subdirectory, similar to the header directory. In the above split layout the

src/ directory doesn’t contain the inclusion subdirectory (foo/) while the following layout

does:

Revision 0.17, June 202414 The build2 Packaging Guide

2.2.2 Decide on the package source code layout

upstream/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- util.hpp
·-- src/
 ·-- foo/
 |-- priv.hpp
 ·-- util.cpp

With the understanding of these key properties of upstream layout you should be in a good posi­

tion to start crafting the bdep-new(1) command line that recreates it.

The bdep-new documentation uses slightly more general terminology compared to what we

used in the previous section in order to also be applicable to projects that use modules instead of

headers.

Specifically, the inclusion subdirectory (foo/) is called source subdirectory while the header

directory (include/) and source directory (src/) are called header prefix and source prefix,

respectively.

2.2.3 Craft bdep new command line to create package

The recommended procedure for this step is to read through the bdep-new’s SOURCE

LAYOUT section (which contains a large number of examples) while experimenting with various

options in an attempt to create the desired layout. If the layout you’ve got isn’t quite right yet,

simply remove the package directory along with the packages.manifest file and try again.

Next to packages.manifest, bdep-new will also create the "glue" buildfile that

allows building all the packages from the repository root. You don’t need to remove it when

re-creating the package.

Let’s illustrate this approach on the first split layout from the previous section:

upstream/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- util.hpp
·-- src/
 |-- priv.hpp
 ·-- util.cpp

We know it’s split, so let’s start with that and see what we get. Remember, our foo package

repository that we have cloned and initialized earlier looks like this:

15Revision 0.17, June 2024 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

$ tree foo/
foo/
|-- upstream/
|-- .gitattributes
|-- .gitignore
|-- README.md
·-- repositories.manifest

Now we create the libfoo package inside:

$ cd foo/
$ bdep new --package --lang c++ --type lib,split libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â ·-- libfoo/
|Â Â ·-- foo.hxx
·-- src/
 ·-- libfoo/
 ·-- foo.cxx

The outer structure looks right, but inside include/ and src/ things are a bit off. Specifically,

the source subdirectory should be foo/, not libfoo/, there shouldn’t be one inside src/, and

the file extensions don’t match upstream. All this can be easily tweaked, however:

$ rm -r libfoo/ packages.manifest
$ bdep new --package \
 --lang c++,cpp \
 --type lib,split,subdir=foo,no-subdir-source \
 libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- foo.hpp
·-- src/
 ·-- foo.cpp

The other bdep-new sub-options (see the bdep-new(1) man page for the complete list) that

you will likely want to use when packaging a third-party project include:

no-version

Omit the auto-generated version header. Usually upstream will provide its own equivalent of

this functionality.

Note that even if upstream doesn’t provide any version information, it’s not a good idea to

try to rectify this by providing your own version header since upstream may add it in a

future version and you may end up with a conflict. Instead, work with the project authors to

rectify this upstream.

Revision 0.17, June 202416 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

no-symexport

auto-symexport

The no-symexport sub-option suppresses the generation of the DLL symbol exporting

header. This is an appropriate option if upstream provides its own symbol exporting arrange­

ments.

The auto-symexport sub-option enables automatic DLL symbol exporting support (see

Automatic DLL Symbol Exporting for background). This is an appropriate option if

upstream relies on similar support in the existing build system. It is also recommended that

you give this functionality a try even if upstream does not support building shared libraries

on Windows.

binless

Create a header-only library. See Don’t make library header-only if it can be compiled and

How do I make a header-only C/C++ library?

buildfile-in-prefix

Place header/source buildfiles into the header/source prefix directory instead of source

subdirectory. To illustrate the difference, compare these two auto-generated layouts paying

attention to the location of buildfiles:

$ bdep new ... --type lib,split,subdir=foo libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
·-- src/
 ·-- foo/
 |-- buildfile
 ·-- foo.cpp

$ bdep new ... --type lib,split,subdir=foo,buildfile-in-prefix libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â |-- foo/
|Â Â |Â Â ·-- foo.hpp
|Â Â ·-- buildfile
·-- src/
 |-- foo/
 |Â Â ·-- foo.cpp
 ·-- buildfile

Note that this sub-option only makes sense if we have the header and/or source prefixes

(include/ and src/ in our case) as well as the source subdirectory (foo/ in our case).

17Revision 0.17, June 2024 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

https://github.com/build2/HOWTO/blob/master/entries/make-header-only-library.md

Why would we want to do this? The main reason is to be able to symlink the entire upstream

directories rather than individual files. In the first listing, the generated buildfiles are

inside the foo/ subdirectories which mean we cannot just symlink foo/ from upstream.

With a large number of files to symlink, this can be such a strong motivation that it may

make sense to invent a source subdirectory in the source prefix even if upstream doesn’t

have one. See Don’t build your main targets in the root buildfile for details on this tech­

nique.

Another reason we may want to move buildfiles to prefix is to be able to handle

upstream projects that have multiple source subdirectories. While this situation is not very

common in the header prefix, it can be encountered in the source prefix of more complex

projects, where upstream wishes to organize the source files into components.

If upstream uses a mixture of C and C++, then it’s recommended to set this up using the --lang
sub-option of bdep-new. For example:

$ bdep new --lang c++,c ...

Continuing with our libfoo example, assuming upstream provides its own symbol exporting,

the final bdep-new command line would be:

$ bdep new --package \
 --lang c++,cpp \
 --type lib,split,subdir=foo,no-subdir-source,no-version,no-symexport \
 libfoo

When packaging an executable, things are usually quite a bit simpler: there is no version header,

symbol exporting, and the layout is normally combined (since there are no public headers). Typi­

cally the only potentially tricky decision you will need to make is whether to use prefix or source

subdirectory. Most likely it will be prefix since most executable projects will use the "" style

inclusion for own headers. For example:

$ bdep new --package \
 --lang c++ \
 --type exe,no-subdir,prefix=foo,export-stub \
 foo

The export-stub sub-option causes the generation of build/export.build, an export

stub that facilitates the importation of targets from our package (see Target Importation for

details). The generation of this file for a library is the default since it will normally be used by

other projects and thus imported. An executable, however, will only need an export stub if it can

plausibly be used during the build (see Build-Time Dependencies and Linked Configurations for

background). Source code generators are an obvious example of such executables. A less obvious

example would be compression utilities such as gzip or zstd. If you are unsure, it’s best to

provide an export stub.

Revision 0.17, June 202418 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

2.2.4 Review and test auto-generated buildfile templates

Let’s get a more complete view of what got generated by the final bdep-new command line

from the previous section:

$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
|-- src/
|Â Â |-- buildfile
|Â Â ·-- foo.cpp
|-- tests/
|Â Â |-- build/
|Â Â |Â Â ·-- ...
|Â Â |-- basics/
|Â Â |Â Â |-- buildfile
|Â Â |Â Â ·-- driver.cpp
|Â Â ·-- buildfile
|-- buildfile
|-- manifest
·-- README.md

Once the overall layout looks right, the next step is to take a closer look at the generated build­
files to make sure that overall they match the upstream build. Of particular interest are the

header and source directory buildfiles (libfoo/include/foo/buildfile and

libfoo/src/buildfile in the above listing) which define how the library is built and

installed.

Here we are focusing on the macro-level differences that are easier to change by tweaking the

bdep-new command line rather than manually. For example, if we look at the generated source

directory buildfile and realize it builds a binful library (that is, a library that includes source

files and therefore produces library binaries) while the upstream library is header-only, it is much

easier to fix this by re-running bdep-new with the binless sub-option than by changing the

buildfiles manually.

Don’t be tempted to start making manual changes at this stage even if you cannot see anything

else that can be fixed with a bdep-new re-run. This is still a dry-run and we will recreate the

package one more time in the following section before starting manual adjustments.

Besides examining the generated buildfiles, it’s also a good idea to build, test, and install

the generated package to make sure everything ends up where you expected and matches

upstream where necessary. In particular, make sure public headers are installed into the same

location as upstream (unless you have decided to deviate, of course) or at least it’s clear how to

tweak the generated buildfiles to achieve this.

19Revision 0.17, June 2024 The build2 Packaging Guide

2.2.4 Review and test auto-generated buildfile templates

The bdep-new-generated library is a simple "Hello, World!" example that can nevertheless be

built, tested, and installed. The idea here is to verify it matches upstream using the generated

source files before replacing them with the upstream source file symlinks.

If you are using Windows, then you will need to temporarily replace the no-symexport
sub-option with auto-symexport in order to make the generated library buildable. But do not

forget to drop this sub-option in the next step.

Note that at this stage it’s easiest to build, test, and install in the source directory, skipping the

bdep initialization of the package (which we would have to de-initialize before we can re-run

bdep-new). Continue with the above example, the recommended sequence of commands would

be:

$ cd libfoo/
$ b update
$ b test
$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install
$ b clean

One relatively common case where the installation location may not match upstream are libraries

that include their headers without the subdirectory prefix (for example, <foo_util.h> instead

of <foo/util.h>). In such cases, in the bdep-new command, you may want to use prefix

rather than source subdirectory (with the latter being the default). For example:

$ bdep new --lib,no-subdir,prefix=foo ...

See SOURCE LAYOUT for details.

Let’s also briefly discuss other subdirectories and files found in the bdep-new-generated

libfoo package.

The build/ subdirectory is the standard build2 place for project-wide build system informa­

tion (see Project Structure for details). We will look closer at its contents in the following

sections.

In the root directory of our package we find the root buildfile and package manifest. We

will be tweaking both in the following steps. There is also README.md which we will replace

with the upstream symlink.

The tests/ subdirectory is the standard build2 tests subproject (see Testing for background

and details). While you can suppress its generation with the no-tests bdep-new sub-option,

we recommend that you keep it and use it as a starting point for porting upstream tests or, if

upstream doesn’t provide any, for a basic "smoke test".

Revision 0.17, June 202420 The build2 Packaging Guide

2.2.4 Review and test auto-generated buildfile templates

You can easily add/remove/rename this tests/ subproject. The only place where it is

mentioned explicitly and where you will need to make changes is the root buildfile. In

particular, if upstream provides examples that you wish to port, it is recommended that you use a

copy of the generated tests/ subproject as a starting point (not forgetting to add the corre­

sponding entry in the root buildfile).

2.2.5 Create final package

If you are satisfied with the bdep-new command line and there are no more automatic adjust­

ments you can squeeze out of it, then it’s time to re-run bdep-new one last time to create the

final package.

While redoing this step later will require more effort, especially if you’ve made manual modifica­

tions to buildfile and manifest, nothing is set in stone and it can be done again by simply

removing the package directory, removing (or editing, if you have multiple packages and only

want to redo some of them) packages.manifest, and starting over.

This time, however, we will do things a bit differently in order to take advantage of some addi­

tional automation offered by bdep-new.

Firstly, we will use the special third-party sub-option which is meant for converting

third-party projects to build2. Specifically, this sub-option automatically enables

no-version and no-symexport (unless auto-symexport is specified). It also adds a

number of values to manifest that makes sense to specify in a package of a third-party project.

Finally, it generates the PACKAGE-README.md template which describes how to use the

package from a build2-based project (see the package-description manifest value

for background).

Secondly, if the package directory already exists and contains certain files, bdep-new can take

this into account when generating the root buildfile and package manifest. In particular, it

will try to guess the license from the LICENSE file and extract the summary from README.md
and use this information in manifest as well as generated PACKAGE-README.md.

If the file names or formats used by upstream don’t match those recognized by bdep-new, then

for now simply omit the corresponding files from the package directory and add them later manu­

ally. Similarly, if an attempt to extract the information is unsuccessful, we will have a chance to

adjust it in manifest later.

Specifically, for README, bdep-new recognizes README.md, README.txt and README
but will only attempt to extract the summary from README.md.

For license files, bdep-new recognizes LICENSE, LICENSE.txt LICENSE.md, COPYING,

and UNLICENSE.

21Revision 0.17, June 2024 The build2 Packaging Guide

2.2.5 Create final package

For changes-related files, bdep-new recognizes NEWS, CHANGES, and CHANGELOG in various

cases as well as with the .md, .txt extensions.

Continuing with our libfoo example and assuming upstream provides the README.md,

LICENSE, and NEWS files, we first manually create the package directory, then add the

symlinks, and finally run bdep-new (notice that we have replaced no-version and

no-symexport with third-party and omitted the package name from the bdep-new
command line since we are running from inside the package directory):

$ cd foo/ # Change to the package repository root.

$ rm -r libfoo/ packages.manifest
$ mkdir libfoo/

$ cd libfoo/ # Change to the package root.
$ ln -s ../upstream/README.md ./
$ ln -s ../upstream/LICENSE ./
$ ln -s ../upstream/NEWS ./

$ bdep new --package \
 --lang c++,cpp \
 --type lib,split,subdir=foo,no-subdir-source,third-party

The final contents of our package will look like this (-> denotes a symlink):

$ cd ../
$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
|-- src/
|Â Â |-- buildfile
|Â Â ·-- foo.cpp
|-- tests/
|Â Â |-- build/
|Â Â |Â Â ·-- ...
|Â Â |-- basics/
|Â Â |Â Â |-- buildfile
|Â Â |Â Â ·-- driver.cpp
|Â Â ·-- buildfile
|-- buildfile
|-- manifest
|-- NEWS -> ../upstream/NEWS
|-- LICENSE -> ../upstream/LICENSE
|-- README.md -> ../upstream/README.md
·-- PACKAGE-README.md

Revision 0.17, June 202422 The build2 Packaging Guide

2.2.5 Create final package

If auto-detection of README, LICENSE, and NEWS succeeds, then you should see the summary
and license values automatically populated in manifest and the symlinked files listed in the

root buildfile.

2.2.6 Adjust package version

While adjusting the bdep-new-generated code is the subject of the following sections, one

tweak that we want to make right away is to change the package version in the manifest file.

In this guide we will assume the upstream package uses semver (semantic version) or semver-like

(that is, has three version components) and will rely on the continuous versioning feature of

build2 to make sure that each commit in our package repository has a distinct version (see

Versioning and Release Management for background).

If upstream does not use semver, then see How do I handle projects that don’t use semantic

versioning? and How do I handle projects that don’t use versions at all? for available options. If

you decide to use the non-semver upstream version as is, then you will have to forgo continuous

versioning as well as the use of bdep-release(1) for release management. The rest of the

guide, however, will still apply. In particular, you will still be able to use bdep-ci(1) and

bdep-publish(1) with a bit of extra effort.

The overall plan to implement continuous versioning is to start with a pre-release snapshot of the

upstream version, keep it like that while we are adjusting the bdep-new-generated package and

committing our changes (at which point we get distinct snapshot versions), and finally, when the

package is ready to publish, change to the final upstream version with the help of

bdep-release(1). Specifically, if the upstream version is X.Y.Z, then we start with the

X.Y.Z-a.0.z pre-release snapshot.

In continuous versioning X.Y.Z-a.0.z means a snapshot after the (non-existent) 0th alpha

pre-release of the X.Y.Z version. See Versioning and Release Management for a more detailed

explanation and examples.

Let’s see how this works for our libfoo example. Say, the upstream version that we are pack­

aging is 2.1.0. This means we start with 2.1.0-a.0.z.

Naturally, the upstream version that we are using should correspond to the commit of the

upstream submodule we have added in the Add upstream repository as git submodule step.

Next we edit the manifest file in the libfoo package and change the version value to

read:

version: 2.1.0-a.0.z

23Revision 0.17, June 2024 The build2 Packaging Guide

2.2.6 Adjust package version

https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-semver.md
https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-semver.md
https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-version.md

Let’s also commit this initial state of the package for easier rollbacks:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Initialize package"

2.3 Fill package with source code and add dependencies

With the package skeleton ready, the next steps are to fill it with upstream source code, add

dependencies, and make any necessary manual adjustments to the generated buildfiles,

manifest, etc. If we do this all at once, however, it can be hard to pin-point the cause of build

failures. For example, if we convert both the library and its tests right away and something

doesn’t work, it can be hard to determine whether the mistake is in the library or in the tests. As a

result, we are going to split this work into a sequence or smaller steps that incrementally replace

the bdep-new-generated code with upstream while allowing us to test each change individually.

We will also commit the changes on each step for easy rollbacks. Specifically, the overall plan is

as follows:

1. Initialize (bdep-init) the package in one or more build configurations.

2. Add dependencies, if any.

3. Fill the library with upstream source code.

4. Adjust project-wide and source subdirectory buildfiles.

5. Make a smoke test for the library.

6. Replace the smoke test with upstream tests.

7. Tweak root buildfile and manifest.

The first three steps are the subject of this section with the following sections covering the rest of

the plan.

As you become more experienced with packaging third-party projects for build2, it may make

sense to start combining or omitting some steps, especially for simpler libraries. For example, if

you see that a library comes with a simple test that shouldn’t cause any complications, then you

could omit the smoke test.

2.3.1 Initialize package in build configurations

Before we start making any changes to the bdep-new-generated files, let’s initialize the package

in at least one build configuration so that we are able to build and test our changes (see Getting

Started Guide for background on bdep-based development workflow). Continuing with our

libfoo example from the earlier steps:

Revision 0.17, June 202424 The build2 Packaging Guide

2.3 Fill package with source code and add dependencies

$ cd foo/ # Change to the package repository root.
$ bdep init -C ../foo-gcc @gcc cc config.cxx=g++

If you are initializing subsequent packages in the already created configuration, then the

command line will be just:

$ bdep init @gcc

Let’s build and test the bdep-new-generated package to make sure everything is in order:

$ bdep update
$ bdep test
$ bdep clean

You can create additional configurations, for example, if you have access to several compilers.

For instance, to create a build configuration for Clang:

$ bdep init -C ../foo-clang @clang cc config.cxx=clang++

If you would like to perform a certain operation on all the build configurations, pass the

-a|--all flag to bdep:

$ bdep update -a
$ bdep test -a
$ bdep clean -a

Let’s also verify that the resulting package repository is clean (doesn’t have any uncommitted or

untracked files):

$ git status

2.3.2 Add dependencies

If the upstream project has any dependencies, now is a good time to specify them so that when we

attempt to build the upstream source code, they are already present.

Identifying whether the upstream project has dependencies is not always easy. The natural first

places to check are the documentation and the existing build system. Sometimes projects also

bundle their dependencies with the project source code (also called vendoring). So it makes sense

to look around the upstream repository for anything that looks like bundled dependencies.

Normally we would need to "unbundle" such dependencies when converting to build2 by

instead specifying a dependency on an external package (see Don’t bundle dependencies for

background).

While there are several reasons we insist on unbundling of dependencies, the main one is that

bundling can cause multiple, potentially conflicting copies of the same dependency to exist in the

build. This can cause subtle build failures that are hard to understand and track down.

25Revision 0.17, June 2024 The build2 Packaging Guide

2.3.2 Add dependencies

One particularly common case to check for is bundling of the testing framework, such as

catch2, by C++ projects. If you have identified that the upstream tests depend on a testing

framework (whether bundled or not), see How do I handle tests that have extra dependencies? for

the recommended way to deal with that.

One special type of dependency which is easy to overlook is between packages in the same

package repository. For example, if we were packaging both libfoo as well as the foo
executable that depends on it, then the foo package has a dependency on libfoo and it must be

specified. In this case we don’t need to add anything to repositories.manifest and in the

depends entry (see below) in foo’s manifest we will normally use the special == $
version constraint, meaning libfoo should have the same version as foo (see the depends
package manifest value for details). For example:

depends: libfoo == $

If you have concluded that the upstream project doesn’t have any dependencies, then you can

remove repositories.manifest from the package repository root (unless you have

already done so), commit this change, and skip the rest of this section.

And if you are still reading, then we assume you have a list of dependencies you need to add,

preferably with their minimum required versions. If you could not identify the minimum required

version for a dependency, then you can fallback to the latest available version, as will be

described in a moment.

With the list of dependencies in hand, the next step is to determine whether they are already

available as build2 packages. For that, head over to cppget.org and search for each depen­

dency.

If you are unable to find a package for a dependency, then it means it hasn’t been packaged for

build2 yet. Check the places mentioned in the Check if package repository already exists step

to see if perhaps someone is already working on the package. If not and the dependency is not

optional, then the only way forward is to first package the dependency.

If you do find a package for a dependency, then note the section of the repository (stable,

testing, etc; see Package Repositories for background) from which the minimum required

version of the package is available. If you were unable to identify the minimum required version,

then note the latest version available from the stable section.

Given the list of repository sections, edit the repositories.manifest file in the package

repository root and uncomment the entry for cppget.org:

:
role: prerequisite
location: https://pkg.cppget.org/1/stable
#trust: ...

Revision 0.17, June 202426 The build2 Packaging Guide

2.3.2 Add dependencies

https://cppget.org/catch2
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://cppget.org/

Next, replace stable at the end of the location value with the least stable section from your

list. For example, if your list contains stable, testing, and beta, then you need beta (the

sections form a hierarchy and so beta includes testing which in turn includes stable).

If you wish, you can also uncomment the trust value and replace ... with the repository

fingerprint. This way you won’t be prompted to confirm the repository authenticity on the first

fetch. See Adding and Removing Dependencies for details.

Once this is done, edit manifest in package root and add the depends value for each depen­

dency. See Adding and Removing Dependencies for background. In particular, here you will use

the minimum required version (or the latest available) to form a version constraint. Which

constraint operator to use will depend on the dependency’s versioning policies. If the dependency

uses semver, then a ^-based constraint is a sensible default.

As an example, let’s say our libfoo depends on libz, libasio, and libsqlite3. To

specify these dependencies we would add the following entries to its manifest:

depends: libz ^1.2.0
depends: libasio ^1.28.0
depends: libsqlite3 ^3.39.4

With all the dependencies specified, let’s now synchronize the state of the build configurations

with our changes by running bdep-sync(1) from the package repository root:

$ bdep sync -a

This command should first fetch the metadata for the repository we specified in reposito­
ries.manifest and then fetch, unpack and configure each dependency that we specified in

manifest.

If you have any build-time dependencies (see Build-Time Dependencies and Linked Configura­

tions for background), then you will get a warning about the corresponding

config.import.* variable being unused and therefore dropped. This is because we haven’t

yet added the corresponding import directives to our buildfiles. For now you can ignore

this warning, which we will fix later, when we adjust the generated buildfiles.

We can examine the resulting state, including the version of each dependency, with

bdep-status(1):

$ bdep status -ai

The last step for this section is to commit our changes:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add dependencies"

27Revision 0.17, June 2024 The build2 Packaging Guide

2.3.2 Add dependencies

https://cppget.org/?about
https://cppget.org/?about

2.3.3 Fill with upstream source code

Now we are ready to begin replacing the bdep-new-generated files with upstream source code

symlinks. We start with the library’s header and source files. Continuing with our libfoo
example, this is what we currently have (notice that LICENSE, README.md, and NEWS are

already symlinks to upstream):

$ cd foo/ # Change to the package repository root.

$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
|-- src/
|Â Â |-- buildfile
|Â Â ·-- foo.cpp
|-- tests/
|Â Â ·-- ...
|-- buildfile
|-- manifest
|-- NEWS -> ../upstream/NEWS
|-- LICENSE -> ../upstream/LICENSE
|-- README.md -> ../upstream/README.md
·-- PACKAGE-README.md

Now we replace generated include/foo/foo.hpp with the library’s real headers and

src/foo.cpp with its real source files:

$ cd libfoo/ # Change to the package root.

$ cd include/foo/
$ rm foo.hpp
$ ln -s ../../../upstream/include/foo/*.hpp ./
$ cd -

$ cd src/
$ rm foo.cpp
$ ln -s ../../upstream/src/*.hpp ./
$ ln -s ../../upstream/src/*.cpp ./
$ cd -

$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â |-- core.hpp -> ../../../upstream/include/foo/core.hpp
|Â Â ·-- util.hpp -> ../../../upstream/include/foo/util.hpp

Revision 0.17, June 202428 The build2 Packaging Guide

2.3.3 Fill with upstream source code

|-- src/
|Â Â |-- buildfile
|Â Â |-- impl.hpp -> ../../upstream/src/impl.hpp
|Â Â |-- core.cpp -> ../../upstream/src/core.cpp
|Â Â ·-- util.cpp -> ../../upstream/src/util.cpp
|-- tests/
|Â Â ·-- ...
·-- ...

Note that the wildcards used above may not be enough in all situations and it’s a good idea to

manually examine the relevant upstream directories and make sure nothing is missing. Specifi­

cally, look out for:

Header/sources with other extensions, for example, C, Objective-C, etc.

Other files that may be needed, for example, .def, config.h.in, etc.

Subdirectories that contain more header/source files.

If upstream contains subdirectories with additional header/source files, then you can symlink

entire subdirectories instead of doing it file by file. For example, let’s say libfoo’s upstream

source directory contains the impl/ subdirectory with additional source files:

$ cd src/
$ ln -s ../../upstream/impl ./
$ cd -

$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- ...
|-- src/
|Â Â |-- impl/ -> ../../upstream/src/impl/
|Â Â |Â Â |-- bar.cpp
|Â Â |Â Â ·-- baz.cpp
|Â Â |-- buildfile
|Â Â |-- impl.hpp -> ../../upstream/src/impl.hpp
|Â Â |-- core.cpp -> ../../upstream/src/core.cpp
|Â Â ·-- util.cpp -> ../../upstream/src/util.cpp
|-- tests/
|Â Â ·-- ...
·-- ...

Wouldn’t it be nice if we could symlink the entire top-level subdirectories (include/foo/ and

src/ in our case) instead of symlinking individual files? As discussed in Craft bdep new
command line to create package, we can, but we will need to change the package layout. Specifi­

cally, we will need to move the buildfiles out of the source subdirectories with the help of

the buildfile-in-prefix sub-option of bdep-new. In the above case, we will also need

to invent a source subdirectory in src/. Whether this is a worthwhile change largely depends on

how many files you have to symlink individually. If it’s just a handful, then it’s probably not

worth the complication, especially if you have to invent source subdirectories. On the other hand,

29Revision 0.17, June 2024 The build2 Packaging Guide

2.3.3 Fill with upstream source code

if you are looking at symlinking hundreds of files, changing the layout makes perfect sense.

One minor drawback of symlinking entire directories is that you cannot easily patch individual

upstream files (see How do I patch upstream source code?).

You will also need to explicitly list such directories as symlinks in .gitattributes if you

want your package to be usable from the git repository directly on Windows. See Symlinks and

Windows for details.

We won’t be able to test this change yet because to make things build we will most likely also

need to tweak the generated buildfiles, which is the subject of the next section. However, it

still makes sense to commit our changes to make rollbacks easier:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add upstream source symlinks"

2.4 Adjust project-wide and source buildfiles

With source code and dependencies added, the next step is to adjust the regenerated build­
files that build the library. This involves two places: the project-wide build system files in

build/ and the source subdirectory buildfiles (in include/ and src/ for our libfoo

example).

2.4.1 Adjust project-wide build system files in build/

We start with reviewing and adjusting the files in the build/ subdirectory of our package,

where you will find three files:

$ cd foo/ # Change to the package repository root.
$ tree libfoo/
libfoo/
|-- build/
|Â Â |-- bootstrap.build
|Â Â |-- root.build
|Â Â ·-- export.build
·-- ...

To recap, the first two contain the project-wide build system setup (see Project Structure for

details) while the last is an export stub that facilitates the importation of targets from our package

(see Target Importation for details).

Normally you don’t need to change anything in bootstrap.build – all it does is specify the

build system project name and load a standard set of core build system modules. Likewise,

export.build is ok as generated unless you need to do something special, like exporting

targets from different subdirectories of your package.

Revision 0.17, June 202430 The build2 Packaging Guide

2.4 Adjust project-wide and source buildfiles

https://build2.org/article/symlinks.xhtml#windows
https://build2.org/article/symlinks.xhtml#windows

While root.build is also often good as is, situations where you may need to tweak it are not

uncommon and include:

Loading an additional build system module.

For example, if your package makes use of Objective-C/C++ (see Objective-C Compilation

and Objective-C++ Compilation) or Assembler (see Assembler with C Preprocessor Compi­

lation), then root.build would be the natural place to load the corresponding modules.

If your package uses a mixture of C and C++, then it’s recommended to set this up using the

--lang sub-option of bdep-new rather than manually. For example:

$ bdep new --lang c++,c ...

Specifying package configuration variables.

If upstream provides the ability to configure their code, for example to enable optional

features, then you may want to translate this to build2 configuration variables, which are

specified in root.build (see Project Configuration for background and details).

Note that you don’t need to add all the configuration variables right away. Instead, you could

first handle the "core" functionality which doesn’t require any configuration and then add

the configuration variables one by one while also making the corresponding changes in

buildfiles.

One type of configuration that you should normally not expose when packaging for build2
is support for both header-only and compiled modes. See Don’t make library header-only if

it can be compiled for details.

Also, in C++ projects, if you don’t have any inline or template files, then you can drop the assign­

ment of the file extension for the ixx{} and txx{} target types, respectively.

If you have added any configuration variables and would like to use non-default values for some

of them in your build, then you will need to reconfigure the package. For example, let’s say we

have added the config.libfoo.debug variable to our libfoo package which enables

additional debugging facilities in the library. This is how we can reconfigure all our builds to

enable this functionality:

$ bdep sync -a config.libfoo.debug=true

If you have made any changes, commit them (similar to the previous step, we cannot test things

just yet):

31Revision 0.17, June 2024 The build2 Packaging Guide

2.4.1 Adjust project-wide build system files in build/

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust project-wide build system files"

2.4.2 Adjust source subdirectory buildfiles

The last step we need to perform before we can try to build our library is to adjust its build­
files. These buildfiles are found in the source subdirectory or, if we used the build­
file-in-prefix bdep-new sub-option, in the prefix directory. There will be two build­
files if we use the split layout (split sub-option) or a single buildfile in the combined

layout. The single buildfile in the combined layout contains essentially the same definitions

as the split buildfiles but combined into one and with some minor simplifications that this

allows. Here we will assume the split layout and continue with our libfoo from the previous

sections. To recap, here is the layout we’ve got with the buildfiles of interest found in

include/foo/ and in src/:

libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â |-- core.hpp -> ../../../upstream/include/foo/core.hpp
|Â Â ·-- util.hpp -> ../../../upstream/include/foo/util.hpp
|-- src/
|Â Â |-- buildfile
|Â Â |-- impl.hpp -> ../../upstream/src/impl.hpp
|Â Â |-- core.cpp -> ../../upstream/src/core.cpp
|Â Â ·-- util.cpp -> ../../upstream/src/util.cpp
|-- tests/
|Â Â ·-- ...
·-- ...

If instead of a library you are packaging an executable, you can skip directly to Adjust source

buildfile: executables.

2.4.3 Adjust header buildfile

The buildfile in include/foo/ is pretty simple:

The buildfile in your package may look slightly different, depending on the exact

bdep-new sub-options used. However, all the relevant definitions discussed below should still

be easily recognizable.

pub_hdrs = {hxx ixx txx}{**}

./: $pub_hdrs

Install into the foo/ subdirectory of, say, /usr/include/

Revision 0.17, June 202432 The build2 Packaging Guide

2.4.2 Adjust source subdirectory buildfiles

recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/foo/
 install.subdirs = true
}

Normally, the only change that you would make to this buildfile is to adjust the installation

location of headers (see Installing for background). In particular, if our headers were included

without the <foo/...> prefix but instead contained the library name in their names (for

example, foo-util.hpp), then the installation setup would instead look like this:

Install directly into say, /usr/include/ recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/
 install.subdirs = true
}

If the library doesn’t have any headers in nested subdirectories (for example,

<foo/util/string.hpp>), you can drop the install.subdirs variable:

Install into the foo/ subdirectory of, say, /usr/include/.
#
{hxx ixx txx}{*}: install = include/foo/

In the combined layout, the installation-related definitions are at the end of the combined

buildfile.

Compared to the split layout where the public and private headers are separated physically, in the

combined layout you may need to achieve the same result (that is, avoid installing private

headers) at the build system level. If the library provides only a handful of public headers and this

set is unlikely to change often, then listing them explicitly is the most straightforward approach.

For example (the @./ qualifier tells build2 they are in the source directory):

Only install public headers into, say, /usr/include/.
#
h{foo}@./ h{foo_version}@./: install = include/
h{*}: install = false

See also How do I handle extra header installation subdirectory?

2.4.4 Adjust source buildfile: overview

Next is the buildfile in src/:

33Revision 0.17, June 2024 The build2 Packaging Guide

2.4.4 Adjust source buildfile: overview

Again, the buildfile in your package may look slightly different, depending on the exact

bdep-new sub-options used. However, all the relevant definitions discussed below should still

be easily recognizable.

For a binless (header-only) library, this buildfile will contain only a small subset of the defi­

nitions shown below. See How do I make a header-only C/C++ library? for additional considera­

tions when packaging header-only libraries.

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
#import xxxx_libs += libhello%lib{hello}

Public headers.
#
pub = [dir_path] ../include/foo/

include $pub

pub_hdrs = $($pub/ pub_hdrs)

lib{foo}: $pub/{$pub_hdrs}

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**} $impl_libs $intf_libs

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
 cxx.export.libs = $intf_libs
}

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.
#
if $version.pre_release

Revision 0.17, June 202434 The build2 Packaging Guide

2.4.4 Adjust source buildfile: overview

https://github.com/build2/HOWTO/blob/master/entries/make-header-only-library.md

 lib{foo}: bin.lib.version = "-$version.project_id"
else
 lib{foo}: bin.lib.version = "-$version.major.$version.minor"

Don’t install private headers.
#
{hxx ixx txx}{*}: install = false

2.4.5 Adjust source buildfile: cleanup

As a first step, let’s remove all the definitions that we don’t need in our library. The two common

pieces of functionality that are often not needed are support for auto-generated headers (such as

config.h generated from config.h.in) and dependencies on other libraries.

If you don’t have any auto-generated headers, then remove all the assignments and expansions of

the out_pfx_inc and out_pfx_src variables. Here is what the relevant lines in the above

buildfile should look like after this change:

Build options.
#
src_pfx_inc = [dir_path] $src_root/include/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$src_pfx_src" "-I$src_pfx_inc"

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$src_pfx_inc"
}

If you do have auto-generated headers, then in the split layout you can remove out_pfx_inc if

you only have private auto-generated headers and out_pfx_src if you only have public ones.

In the combined layout the single buildfile does not set the *_pfx_* variables. Instead it

uses the src_root and out_root variables directly. For example:

Build options.
#
cxx.poptions =+ "-I$out_root" "-I$src_root"

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
}

35Revision 0.17, June 2024 The build2 Packaging Guide

2.4.5 Adjust source buildfile: cleanup

To remove support for auto-generated headers in the combined buildfile, simply remove the

corresponding out_root expansions:

Build options.
#
cxx.poptions =+ "-I$src_root"

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$src_root"
}

If you only have private auto-generated headers, then only remove the expansion from

cxx.export.poptions.

If you don’t have any dependencies, then remove all the assignments and expansions of the

intf_libs and impl_libs variables. That is, the following lines in the original build­
file:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
#import xxxx_libs += libhello%lib{hello}

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**} $impl_libs $intf_libs

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
 cxx.export.libs = $intf_libs
}

Become just these:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**}

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
}

Revision 0.17, June 202436 The build2 Packaging Guide

2.4.5 Adjust source buildfile: cleanup

2.4.6 Adjust source buildfile: dependencies

If you do have dependencies, then let’s handle them now.

Here we will assume dependencies on other libraries, which is the common case. If you have

dependencies on executables, for example, source code generators, see Build-Time Dependencies

and Linked Configurations on how to handle that. In this case you will also need to reconfigure

your package after adding the corresponding import directives in order to re-acquire the previ­

ously dropped config.import.* values. Make sure to also pass any configuration variables

you specified in Adjust project-wide build system files in build/. For example:

$ bdep sync -a --disfigure config.libfoo.debug=true

For each library that your package depends on (and which you have added to manifest in the

Add dependencies step), you need to first determine whether it’s an interface or implementation

dependency and then import it either into the intf_libs or impl_libs variable, respec­

tively.

See Library Exportation and Versioning for background on the interface vs implementation

distinction. But as a quick rule of thumb, if the library you are packaging includes a header from

the dependency library in one of its public headers, then it’s an interface dependency. Otherwise,

it’s an implementation dependency.

Continuing with our libfoo example, as we have established in Add dependencies, it depends

on libasio, libz, and libsqlite3 and let’s say we’ve determined that libasio is an

interface dependency because it’s included from include/foo/core.hpp while the other

two are implementation dependencies because they are only included from src/. Here is how

we would change our buildfile to import them:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
import intf_libs += libasio%lib{asio}
import impl_libs += libz%lib{z}
import impl_libs += libsqlite3%lib{sqlite3}

You can tidy this a bit further if you would like:

import intf_libs = libasio%lib{asio}
import impl_libs = libz%lib{z}
import impl_libs += libsqlite3%lib{sqlite3}

If you don’t have any implementation or interface dependencies, you can remove the assignment

and all the expansions of the corresponding *_libs variable.

37Revision 0.17, June 2024 The build2 Packaging Guide

2.4.6 Adjust source buildfile: dependencies

Note also that system libraries like -lm, -ldl on UNIX or advapi32.lib, ws2_32.lib on

Windows should not be imported. Instead, they should be listed in the c.libs or cxx.libs

variables. See How do I link a system library for details.

2.4.7 Adjust source buildfile: public headers

With the unnecessary parts of the buildfile cleaned up and dependencies handled, let’s

discuss the common changes to the remaining definitions, going from top to bottom. We start

with the public headers block:

Public headers.
#
pub = [dir_path] ../include/foo/

include $pub

pub_hdrs = $($pub/ pub_hdrs)

lib{foo}: $pub/{$pub_hdrs}

This block gets hold of the list of public headers and makes them prerequisites of the library.

Normally you shouldn’t need to make any changes here. If you need to exclude some headers, it

should be done in the header buildfile in the include/ directory.

In the combined layout the single buildfile does not have such code. Instead, all the headers

are covered by the wildcard pattern in the following block.

2.4.8 Adjust source buildfile: sources, private headers

The next block deals with sources, private headers, and dependencies, if any:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**} $impl_libs $intf_libs

By default it will list all the relevant files as prerequisites of the library, starting from the direc­

tory of the buildfile and including all the subdirectories, recursively (see Name Patterns for

background on wildcard patterns).

If your C++ package doesn’t have any inline or template files, then you can remove the ixx and

txx target types, respectively (which would be parallel to the change made in root.build;

see Adjust project-wide build system files in build/). For example:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{**} $impl_libs $intf_libs

Revision 0.17, June 202438 The build2 Packaging Guide

2.4.7 Adjust source buildfile: public headers

https://github.com/build2/HOWTO/blob/master/entries/link-system-library.md

Source files other than C/C++ (for example, Assembler, Objective-C/C++) are dealt with in

Adjust source buildfile: extra requirements below.

The other common change to this block is the exclusion of certain files or making them condi­

tionally included. As an example, let’s say in our libfoo the source subdirectory contains a

bunch of *-test.cpp files which are unit tests and should not be listed as prerequisites of a

library. Here is how we can exclude them:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{** -**-test} $impl_libs $intf_libs

Let’s also assume our libfoo contains impl-win32.cpp and impl-posix.cpp which

provide alternative implementations of the same functionality for Windows and POSIX and

therefore should only be included as prerequisites on the respective platforms. Here is how we

can handle that:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{** -impl-win32 -impl-posix -**-test}
lib{foo}: cxx{impl-win32}: include = ($cxx.target.class == ’windows’)
lib{foo}: cxx{impl-posix}: include = ($cxx.target.class != ’windows’)
lib{foo}: $impl_libs $intf_libs

There are two nuances in the above example worth highlighting. Firstly, we have to exclude the

files from the wildcard pattern before we can conditionally include them. Secondly, we have to

always link libraries last. In particular, the following is a shorter but an incorrect version of the

above:

lib{foo}: {hxx cxx}{** -impl-win32 -impl-posix -**-test} \
 $impl_libs $intf_libs
lib{foo}: cxx{impl-win32}: include = ($cxx.target.class == ’windows’)
lib{foo}: cxx{impl-posix}: include = ($cxx.target.class != ’windows’)

You may also be tempted to use the if directive instead of the include variable for conditional

prerequisites. For example:

if ($cxx.target.class == ’windows’)
 lib{foo}: cxx{impl-win32}
else
 lib{foo}: cxx{impl-posix}

This would also be incorrect. For background and details, see How do I keep the build graph

configuration-independent?

39Revision 0.17, June 2024 The build2 Packaging Guide

2.4.8 Adjust source buildfile: sources, private headers

https://github.com/build2/HOWTO/blob/master/entries/keep-build-graph-config-independent.md
https://github.com/build2/HOWTO/blob/master/entries/keep-build-graph-config-independent.md

2.4.9 Adjust source buildfile: build and export options

The next two blocks are the build and export options, which we will discuss together:

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
 cxx.export.libs = $intf_libs
}

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

The build options are in effect when the library itself is being built and the exported options are

propagated to the library consumers (see Library Exportation and Versioning for background on

exported options). For now we will ignore the commented out lines that add -DFOO_STATIC*
and -DFOO_SHARED* macros – they are for symbol exporting and we will discuss this topic

separately.

If the library you are packaging only relied on platform-independent APIs, then chances are you

won’t need to change anything here. On the other hand, if it does anything platform-specific, then

you will most likely need to add some options.

As discussed in the Output Directories and Scopes section of the build system introduction, there

is a number of variables that are used to specify compilation and linking options, such as

*.poptions (cxx.poptions in the above example), *.coptions, etc. The below table

shows all of them with their rough make equivalents in the third column:

*.poptions preprocess CPPFLAGS
*.coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS
*.libs system libraries LIBS/LDLIBS

Revision 0.17, June 202440 The build2 Packaging Guide

2.4.9 Adjust source buildfile: build and export options

The recommended approach here is to study the upstream build system and copy custom

compile/link options to the appropriate build2 variables. Note, however, that doing it thought­

lessly/faithfully by copying all the options may not always be a good idea. See Which C/C++

compile/link options are OK to specify in a project’s buildfile? for the guidelines.

If you are packaging a library that includes a large number of optional features, it may be unclear

which of them would make sense to enable by default. The notorious example of this situation is

libsqlite3 which provides hundreds of preprocessor macros to enable or tune various aspects

of its functionality.

The recommended approach in cases like this is to study the configuration of such a library in

distributions like Debian and Fedora and use the same defaults. In particular, this will allow us to

substitute the build2 package with the system-installed version.

Oftentimes, custom options must only be specified for certain target platforms or when using a

certain compiler. While build2 provides a large amount of information to identify the build

configuration as well as more advanced buildfile language mechanisms (such as Pattern

Matching) to make sense of it, this is a large topic for which we refer you to The build2 Build

System manual. Additionally, github.com/build2-packaging now contains a large number of

packages that you can study and search for examples.

While exporting preprocessor macros to communicate configuration is a fairly common tech­

nique, it has a number of drawbacks and limitations. Specifically, a large number of such macros

will add a lot of noise to the consumer’s compilation command lines (especially if multiple

libraries indulge in this). Plus, the information conveyed by such macros is limited to simple

values and is not easily accessible in consumer buildfiles.

To overcome these drawbacks and limitations, build2 provides a mechanism for conveying

metadata with C/C++ libraries (and executables). See, How do I convey additional information

(metadata) with executables and C/C++ libraries? for details.

Note that outright replacing the preprocessor macros with metadata can be done if this informa­

tion is only used by the library consumers. In other words, if the library’s public headers rely on

the presence of such macros, then we have no choice but to export them, potentially also provid­

ing the metadata so that this information is easily accessible from buildfiles.

Let’s consider a representative example based on our libfoo to get a sense of what this

normally looks like as well as to highlight a few nuances. We will assume our libfoo requires

either the FOO_POSIX or FOO_WIN32 macro to be defined during the build in order to identify

the target platform. Additionally, extra features can be enabled by defining FOO_EXTRAS, which

should be done both during the build and for consumption (so this macro must also be exported).

Next, this library requires the -fno-strict-aliasing compile option for the GCC-class

compilers (GCC, Clang, etc). Finally, we need to link pthread on POSIX and ws2_32.lib
on Windows. This is how we would work all this into the above fragment:

41Revision 0.17, June 2024 The build2 Packaging Guide

2.4.9 Adjust source buildfile: build and export options

https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md
https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md
https://github.com/build2-packaging/sqlite
https://github.com/build2-packaging
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

cxx.poptions += -DFOO_EXTRAS

if ($cxx.target.class == ’windows’)
 cxx.poptions += -DFOO_WIN32
else
 cxx.poptions += -DFOO_POSIX

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

if ($cxx.class == ’gcc’)
 cxx.coptions += -fno-strict-aliasing

switch $cxx.target.class, $cxx.target.system
{
 case ’windows’, ’mingw32’
 cxx.libs += -lws2_32
 case ’windows’
 cxx.libs += ws2_32.lib
 default
 cxx.libs += -pthread
}

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc" -DFOO_EXTRAS
 cxx.export.libs = $intf_libs
}

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

There are a few nuances in the above code worth keeping in mind. Firstly, notice that we append

(rather than assign) to all the non-export variables (*.poptions, *.coptions, *.libs).

This is because they may already contain some values specified by the user with their

config.*.* counterparts. On the other hand, the *.export.* variables are assigned.

Secondly, the order in which we append to the variables is important for the value to accumulate

correctly. You want to first append all the scope-level values, then target type/pattern-specific,

and finally any target-specific; that is, from more general to more specific (see Buildfile

Language for background). To illustrate this point, let’s say in our libfoo, the FOO_POSIX or

FOO_WIN32 macro are only necessary when compiling util.cpp. Below would be the correct

Revision 0.17, June 202442 The build2 Packaging Guide

2.4.9 Adjust source buildfile: build and export options

order of assigning to cxx.poptions:

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

cxx.poptions += -DFOO_EXTRAS

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

if ($cxx.target.class == ’windows’)
 {obja objs}{util}: cxx.poptions += -DFOO_WIN32
else
 {obja objs}{util}: cxx.poptions += -DFOO_POSIX

Note that target-specific *.poptions and *.coptions must be specified on the object file

targets while *.loptions and *.libs – on the library or executable targets.

2.4.10 Adjust source buildfile: symbol exporting

Let’s now turn to a special sub-topic of the build and export options that relates to the shared

library symbol exporting. To recap, a shared library on Windows must explicitly specify the

symbols (functions and global data) that it wishes to make accessible by its consumers (executa­

bles and other shared libraries). This can be achieved in three different ways: The library can

explicitly mark in its source code the names whose symbols should be exported. Alternatively,

the library can provide a .def file to the linker that lists the symbols to be exported. Finally, the

library can request the automatic exporting of all symbols, which is the default semantics on

non-Windows platforms. Note that the last two approaches only work for exporting functions, not

data, unless special extra steps are taken by the library consumers. Let’s discuss each of these

approaches in the reverse order, that is, starting with the automatic symbol exporting.

The automatic symbol exporting is implemented in build2 by generating a .def file that

exports all the relevant symbols. It requires a few additional definitions in our buildfile as

described in Automatic DLL Symbol Exporting. You can automatically generate the necessary

setup with the auto-symexport bdep-new sub-option.

Using a custom .def file to export symbols is fairly straightforward: simply list it as a prerequi­

site of the library and it will be automatically passed to the linker when necessary. For example:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{**} $impl_libs $intf_libs def{foo}

Some third-party projects automatically generate their .def file. In this case you can try to

re-create the same generation in the buildfile using an ad hoc recipe (or the in or auto­
conf build system modules). If that doesn’t look possible (for example, if the generation logic is

complex and is implemented in something like Perl or Python), then you can try your luck with

43Revision 0.17, June 2024 The build2 Packaging Guide

2.4.10 Adjust source buildfile: symbol exporting

https://github.com/build2/libbuild2-autoconf
https://github.com/build2/libbuild2-autoconf

automatic symbol exporting. Failing that, the only remaining option is to use a pre-generated

.def file in the build2 build.

The last approach is to explicitly specify in the source code which symbols must be exported by

marking the corresponding declarations with __declspec(dllexport) during the library

build and __declspec(dllimport) during the library use. This is commonly achieved with

a macro, customarily called *_EXPORT or *_API, which is defined to one of the above speci­

fiers based on whether static or shared library is being built or is being consumed, which, in turn,

is also normally signaled with a few more macros, such as *_BUILD_DLL and

*_USE_STATIC.

Because this approach requires extensive changes to the source code, you will normally only use

it in your build2 build if it is already used in the upstream build.

In build2 you can explicitly signal any of the four situations (shared/static, built/consumed) by

uncommenting and adjusting the following four lines in the build and export options blocks:

Build options.
#

...

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.
#

...

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

As an example, let’s assume our libfoo defines in one of its headers the FOO_EXPORT macro

based on the FOO_BUILD_DLL (shared library is being build) and FOO_USE_STATIC (static

library is being used) macros that it expects to be appropriately defined by the build system. This

is how we would modify the above fragment to handle this setup:

Build options.
#

...

objs{*}: cxx.poptions += -DFOO_BUILD_DLL

Export options.
#

...

liba{foo}: cxx.export.poptions += -DFOO_USE_STATIC

Revision 0.17, June 202444 The build2 Packaging Guide

2.4.10 Adjust source buildfile: symbol exporting

2.4.11 Adjust source buildfile: shared library version

The final few lines in the above buildfile deal with shared library binary (ABI) versioning:

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.
#
if $version.pre_release
 lib{foo}: bin.lib.version = "-$version.project_id"
else
 lib{foo}: bin.lib.version = "-$version.major.$version.minor"

The bdep-new-generated setup arranges for the platform-independent versioning where the

package’s major and minor version components are embedded into the shared library binary

name (and soname) under the assumption that only patch versions are ABI-compatible.

The two situations where you would want to change this are when the above assumption does not

hold and/or when upstream provides platform-specific shared library versions which you would

like to re-create in your build2 build. See Library Exportation and Versioning for background

and details.

2.4.12 Adjust source buildfile: executables

If instead of a library you are packaging an executable, then, as mentioned earlier, it will most

likely be a combined layout with a single buildfile. This buildfile will also be much

simpler compared to the library’s. For example, give the following bdep-new command:

$ bdep new --package \
 --lang c++ \
 --type exe,no-subdir,prefix=foo,export-stub \
 foo

The resulting source buildfile will look like this:

libs =
#import libs += libhello%lib{hello}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

out_pfx = [dir_path] $out_root/foo/
src_pfx = [dir_path] $src_root/foo/

cxx.poptions =+ "-I$out_pfx" "-I$src_pfx"

If the executable doesn’t have any inline/template/header files, then you can remove the

ixx/txx/hxx target types, respectively (which would be parallel to the change made in

root.build; see Adjust project-wide build system files in build/). For example:

45Revision 0.17, June 2024 The build2 Packaging Guide

2.4.11 Adjust source buildfile: shared library version

exe{foo}: {hxx cxx}{**} $libs testscript

If the source code includes its own headers with the "" style inclusion (or doesn’t have any

headers), then we can also get rid of out_pfx and src_pfx. For example:

libs =
#import libs += libhello%lib{hello}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

Unfortunately, it’s not uncommon for projects that provide both a library and an executable, for

the executable source code to include public and/or private library headers with the relative ""
style inclusion. For example:

#include "../../libfoo/include/foo/util.hpp"
#include "../../libfoo/src/impl.hpp"

This approach won’t work in build2 since the two packages may end up in different directories

or the library could even be installed. There are two techniques that can be used to work around

this issue (other than patching the upstream source code).

For public headers we can provide, in the appropriate places within the executable package,

"thunk headers" with the same names as public headers that simply include the corresponding

public header from the library using the <> style inclusion.

For private headers we can provide, again in the appropriate places within the executable

package, our own symlinks for a subset of private headers. Note that this will only work if the use

of private headers within the executable does not depend on any symbols that are not exported by

the library (failing that, the executable will have to always link to the static variant of the library).

For a real example of both of these techniques, see the zstd package repository.

Dealing with dependencies in executables is similar to libraries except that here we don’t have the

interface/implementation distinction; see the Adjust source buildfile: dependencies step. For

example:

import libs = libfoo%lib{foo}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

Likewise, dealing with build options in executables is similar to libraries except that here we have

no export options; see the Adjust source buildfile: build and export options step.

If the executable can plausibly be used in a build, then it’s recommended to add build2 meta­

data as describe in How do I convey additional information (metadata) with executables and

C/C++ libraries? See also Modifying upstream source code with C/C++ preprocessor on how to

do it without physically modifying upstream source code. See the zstd package repository for a

Revision 0.17, June 202446 The build2 Packaging Guide

2.4.12 Adjust source buildfile: executables

https://github.com/build2-packaging/zstd
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2-packaging/zstd

real example of doing this.

We will discuss the testscript prerequisite in the Make smoke test: executables step below.

2.4.13 Adjust source buildfile: extra requirements

The changes discussed so far should be sufficient to handle a typical library or executable that is

written in C and/or C++ and is able to handle platform differences with the preprocessor and

compile/link options. However, sooner or later you will run into a more complex library that may

use additional languages, require more elaborate platform detection, or use additional functional­

ity, such as support for source code generators. The below list provides pointers to resources that

cover the more commonly encountered additional requirements.

The in build system module

Use to process config.h.in (or other .in files) that don’t require Autoconf-style plat­

form probing (HAVE_* options).

The autoconf build system module

Use to process config.h.in (or their CMake/Meson variants) that require Autoconf-style

platform probing (HAVE_* options) or CMake/Meson-specific substitution syntax

(#cmakedefine, etc).

Objective-C Compilation and Objective-C++ Compilation

Use to compile Objective-C (.m) or Objective-C++ (.mm) source files.

Assembler with C Preprocessor Compilation

Use to compile Assembler with C Preprocessor (.S) source files.

Implementing Unit Testing

Use if upstream has tests (normally unit tests) in the source subdirectory.

Build-Time Dependencies and Linked Configurations

Use if upstream relies on source code generators, such as lex and yacc.

The build2 HOWTO

See the build2 HOWTO article collection for more unusual requirements.

47Revision 0.17, June 2024 The build2 Packaging Guide

2.4.13 Adjust source buildfile: extra requirements

https://github.com/build2/libbuild2-autoconf
https://cppget.org/reflex
https://cppget.org/byacc
https://github.com/build2/HOWTO/

2.4.14 Test library build

At this point our library should be ready to build, at least in theory. While we cannot build and

test the entire package before adjusting the generated tests/ subproject (the subject of the next

step), we can try to build just the library and, if it has any unit tests in the source subdirectory,

even run some tests.

If the library is header only, there won’t be anything to build unless there are unit tests. Still, you

may want to continue with this exercise to detect any syntactic mistakes in the buildfiles,

etc.

To build only a specific subdirectory of our package, we use the build system directly (continuing

with our libfoo example):

$ cd libfoo/src/ # Change to the source subdirectory.
$ b update

If there are any issues, try to fix them and then build again. Once the library builds and if it has

unit tests, you can try to run them:

$ b test

It also makes sense to test the installation and see if anything is off (such as private headers being

installed):

$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install

Once the library builds, it makes sense to commit our changes for easier rollbacks:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust source subdirectory buildfiles"

2.5 Make smoke test

With the library build sorted, we need tests to make sure the result is actually functional. As

discussed earlier, it is recommended to start with a simple "smoke test", make sure that works,

and then replace it with upstream tests. However, if upstream tests look simple enough, you can

skip the smoke test. For example, if upstream has all its tests in a single source file and the way it

is built doesn’t look too complicated, then you can just use that source file in place of the smoke

test.

Revision 0.17, June 202448 The build2 Packaging Guide

2.5 Make smoke test

If upstream has no tests, then the smoke test will have to stay. A library can only be published if

it has at least one test.

It is also recommended to have the smoke test if upstream tests are in a separate package. See

How do I handle tests that have extra dependencies? for background and details.

If instead of a library you are packaging an executable, you can skip directly to Make smoke test:

executables.

To recap, the bdep-new-generated tests/ subdirectory looks like this (continuing with our

libfoo example):

libfoo/
|-- ...
·-- tests/
 |-- build/
 |Â Â |-- bootstrap.build
 |Â Â ·-- root.build
 |-- basics/
 |Â Â |-- driver.cpp
 |Â Â ·-- buildfile
 ·-- buildfile

The tests/ subdirectory is a build system subproject, meaning that it can be built indepen­

dently, for example, to test the installed version of the library (see Testing for background). In

particular, this means it has the build/ subdirectory with project-wide build system files, the

same as the library. The basics/ subdirectory contains the generated test, which is what we

will be turning into a smoke test. The subproject root buildfile rarely needs changing.

2.5.1 Adjust project-wide build system files in tests/build/

Review and adjust the generated bootstrap.build and root.build (there will be no

export.build) similar to the Adjust project-wide build system files in build/ step.

Here the only change you would normally make is in root.build and which is to drop the

assignment of extensions for target types that are not used in tests.

2.5.2 Convert generated test to library smoke test

The basics/ subdirectory contains the driver.cpp source file that implements the test and

buildfile that builds it. You can rename both the test subdirectory (basics/) and the source

file driver.cpp, for example, if you are going with the upstream tests directly. You can also

add more tests by simply copying basics/.

49Revision 0.17, June 2024 The build2 Packaging Guide

2.5.1 Adjust project-wide build system files in tests/build/

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

The purpose of a smoke test is to make sure the library’s public headers can be included (includ­

ing in the installed case, no pun intended), it can be linked, and its basic functionality works.

To achieve this, we modify driver.cpp to include the library’s main headers and call a few

functions. For example, if the library has the initialize/deinitialize type of functions, those are

good candidates to call. If the library is not header-only, make sure that the smoke test calls at

least one non-inline/template function to test symbol exporting.

Make sure that your test includes the library’s public headers the same way as would be done by

the library consumers.

Continuing with our libfoo example, this is what its smoke test might look like:

#include <foo/core.hpp>
#include <foo/util.hpp>

#undef NDEBUG
#include <cassert>

int main ()
{
 foo::context* c (foo::init (0 /* flags */));
 assert (c != nullptr);
 foo::deinit (c);
}

The C/C++ assert() macro is often adequate for simple tests and does not require extra

dependencies. But see How do I correctly use C/C++ assert() in tests?

The test buildfile is pretty simple:

import libs = libfoo%lib{foo}

exe{driver}: {hxx ixx txx cxx}{**} $libs testscript{**}

If you have adjusted the library target name (lib{foo}) in the source subdirectory build­
file, then you will need to make the corresponding change in the import directive here. You

may also want to tidy it up by removing unused prerequisite types. For example:

import libs = libfoo%lib{foo}

exe{driver}: {hxx cxx}{**} $libs

2.5.3 Make smoke test: executables

If instead of a library we are packaging an executable, then instead of the tests/ subproject we

get the testscript file in the source subdirectory (see Adjust source buildfile: executa­

bles for a refresher). This file can be used to write one or more tests that exercise our executable

(see Testing for background).

Revision 0.17, June 202450 The build2 Packaging Guide

2.5.3 Make smoke test: executables

https://github.com/build2/HOWTO/blob/master/entries/use-assert-in-tests.md

How exactly to test any given executable depends on its functionality. For instance, for a

compression utility we could write a roundtrip test that first compresses some input, then decom­

presses it, and finally compares the result to the original. For example (taken from the zstd
package repository):

: roundtrip
:
echo ’test content’ | $* -zc | $* -dc >’test content’

On the other hand, for an executable that is a source code generator, proper testing would involve

a separate tests package that has a build-time dependency on the executable and that exercises the

generated code (see How do I handle tests that have extra dependencies? for background and

details). See the thrift package repository for an example of this setup.

If the executable provides a way to query its version, one test that you should always be able to

write, and which can serve as a last resort smoke test, is the version check. For example:

: version
:
$* --version >>~"/EOO/"
/.*$(version.major)\.$(version.minor)\.$(version.patch).*/
EOO

See also How do I sanitize the execution of my tests?

2.5.4 Test locally

With the smoke test ready, we can finally do some end-to-end testing of our library build. We

will start with doing some local testing to catch basic mistakes and then do the full CI to detect

any platform/compiler-specific issues.

First let’s run the test in the default build configuration by invoking the build system directly (see

Getting Started Guide for background on default configurations):

$ cd libfoo/tests/ # Change to the tests/ subproject.
$ b test

If there are any issues (compile/link errors, test failures), try to address them and re-run the test.

Once the library builds in the default configuration and the result passes the tests, you can do the

same for all the build configurations, in case you have initialized your library in several:

$ bdep test -a

51Revision 0.17, June 2024 The build2 Packaging Guide

2.5.4 Test locally

https://github.com/build2-packaging/zstd
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2-packaging/thrift/tree/0.17
https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

2.5.5 Test locally: installation

Once the development build works, let’s also test the installed version of the library. In particular,

this makes sure that the public headers are installed in a way that is compatible with how they are

included by our test (and would be included by the library consumers). To test this we first install

the library into a temporary directory:

$ cd libfoo/ # Change to the package root.
$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install

Next we build just the tests/ subproject out of source and arranging for it to find the installed

library (see Output Directories and Scopes for background on the out of source build syntax):

$ cd libfoo/ # Change to the package root.
$ b test: tests/@/tmp/libfoo-tests-out/ \
 config.cc.loptions=-L/tmp/install/lib \
 config.bin.rpath=/tmp/install/lib

The equivalent MSVC command line would be:

> b install config.install.root=c:\tmp\install

> set "PATH=c:\tmp\install\bin;%PATH%"
> b test: tests\@c:\tmp\libfoo-tests-out\^
 config.cc.loptions=/LIBPATH:c:\tmp\install\lib

It is a good idea to look over the installed files manually and make sure there is nothing unex­

pected, for example, missing or extraneous files.

Once done testing the installed case, let’s clean things up:

$ rm -r /tmp/install /tmp/libfoo-tests-out

2.5.6 Test locally: distribution

Another special case worth testing is the preparation of the source distribution (see Distributing

for background). This, in particular, is how your package will be turned into the source archive

for publishing to cppget.org. Here we are primarily looking for missing files. As a bonus, this will

also allow us to test the in source build. First we distribute our package to a temporary directory

(again using the default configuration and the build system directly):

$ cd libfoo/ # Change to the package root.
$ b dist config.dist.root=/tmp/dist config.dist.uncommitted=true

The result will be in the /tmp/dist/libfoo-<version>/ directory which should resem­

ble our libfoo/ package but without files like .gitignore. Next we build and test the distri­

bution in source:

Revision 0.17, June 202452 The build2 Packaging Guide

2.5.5 Test locally: installation

https://cppget.org/

$ cd /tmp/dist/libfoo-<version>/
$ b configure config.cxx=g++
$ b update
$ b test

If your package has dependencies that you import in your buildfile, then the above

configure operation will most likely fail because such dependencies cannot be found (it may

succeed if they are available as system-installed). The error message will suggest specifying the

location of each dependency with the config.import.* variable. You can fix this by setting

each such config.import.* to the location of the default build configuration (created in the

Initialize package in build configurations step) which should contain all the necessary dependen­

cies. Simply re-run the configure operation until you have discovered and specified all the

necessary config.import.* variables, for example:

$ b configure config.cxx=g++ \
 config.import.libz=.../foo-gcc \
 config.import.libasio=.../foo-gcc \
 config.import.libsqlite3=.../foo-gcc

It is a good idea to look over the distributed files manually and make sure there is nothing

missing or extraneous.

Once done testing the distribution, let’s clean things up:

$ rm -r /tmp/dist

2.5.7 Commit and test with CI

With local testing complete, let’s commit our changes and submit a remote CI job to test our

library on all the major platforms and with all the major compilers:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add smoke test"
$ git push -u

$ bdep ci

The result of the bdep-ci(1) command is a link where you can see the status of the builds.

Make sure to wait until there are no more unbuilt configurations (that is, the number of entries

with the <unbuilt> or building result is 0).

If any builds fail, view the logs to determine the cause, try to fix it, commit your fix, and CI

again.

53Revision 0.17, June 2024 The build2 Packaging Guide

2.5.7 Commit and test with CI

It is possible that upstream does not support some platforms or compilers. For example, it’s

common for smaller projects not to bother with supporting "secondary" compilers, such as

MinGW GCC on Windows or Homebrew GCC on Mac OS.

If upstream expressly does not support some platform or compiler, it’s probably not worth spend­

ing time and energy trying to support it in the package. Most likely it will require changes to

upstream source code and that is best done upstream rather than in the package (see Don’t try to

fix upstream issues in the package for background). In this case you would want to exclude these

platforms/compilers from the CI builds using the builds package manifest value.

The other common cause of a failed build is a newer version of a compiler or platform that breaks

upstream. In this case there are three options: Ideally you would want to fix this in upstream and

have a new version released. Failing that, you may want to patch the upstream code to fix the

issues, especially if this is one of the major platforms and/or primary compilers (see How do I

patch upstream source code? for details). Finally, you can just leave the build failing with the

expectation that it will be fixed in the next upstream version. Note that in this case you should not

exclude the failing build from CI.

2.6 Replace smoke test with upstream tests

With the smoke test working we can now proceed with replacing it with the upstream tests.

2.6.1 Understand how upstream tests work

While there are some commonalities in how C/C++ libraries are typically built, when it comes to

tests there is unfortunately little common ground in how they are arranged, built, and executed.

As a result, the first step in dealing with upstream tests is to study the existing build system and

try to understand how they work.

If upstream tests prove incomprehensible (which is unfortunately not uncommon) and the only

options you see are to go with just the smoke test or to give up, then go with just the smoke test.

In this case it’s a good idea to create an issue in the package repository mentioning that upstream

tests are still a TODO.

If instead of a library you are packaging an executable, then whether the below steps will apply

depends on the functionality of the executable.

In particular, testing source code generators would normally involve exercising the generated

code, in which case the following will largely apply, though in this case the tests would need to

be placed into a separate tests package that has a build-time dependency on the executable (see

How do I handle tests that have extra dependencies? for background and details). In fact, if a

source code generator is accompanied by a runtime library, then the tests will normally exercise

them together (though a runtime library might also have its own tests). See the thrift package

Revision 0.17, June 202454 The build2 Packaging Guide

2.6 Replace smoke test with upstream tests

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2-packaging/thrift/tree/0.17

repository for an example of this setup.

To get you started with analyzing the upstream tests, below are some of the questions you would

likely need answered before you can proceed with the conversion:

Are upstream tests unit tests or integration tests?

While the distinction is often fuzzy, for our purposes the key differentiator between unit and

integration tests is which API they use: integration tests only use the library’s public API

while unit tests need access to the implementation details.

Normally (but not always), unit tests will reside next to the library source code since they

need access to more than just the public headers and the library binary (private headers, indi­

vidual object files, utility libraries, etc). While integration tests are normally (but again not

always) placed into a separate subdirectory, usually called tests or test.

If the library has unit tests, then refer to Implementing Unit Testing for background on how

to handle them in build2.

If the library has integration tests, then use them to replace (or complement) the smoke test.

If the library has unit tests but no integration tests, then it is recommended to keep the smoke

test since that’s the only way the library will be tested via its public API.

Do upstream tests use an external testing framework?

Oftentimes a C++ library will use an external testing framework to implement tests. Popular

choices include catch2, gtest, doctest, and libboost-test.

If a library uses such an external testing framework, then it is recommended to factor tests

into a separate package in order to avoid making the library package depend on the testing

framework (which is only required during testing). See How do I handle tests that have extra

dependencies? for details.

Sometimes you will find that upstream bundles the source code of the testing framework

with their tests. This is especially common with catch2. If that’s the case, it is strongly

recommended that you "unbundle" it by making it a proper external dependency. See Don’t

bundle dependencies for background.

Are upstream tests in a single or multiple executables?

It’s not unusual for libraries to have a single test executable that runs all the test cases. This

is especially common if a C++ testing framework is used. In this case it is natural to replace

the contents of the smoke test with the upstream source code, potentially renaming the test

subdirectory (basics/) to better match upstream naming.

55Revision 0.17, June 2024 The build2 Packaging Guide

2.6.1 Understand how upstream tests work

https://cppget.org/catch2
https://cppget.org/gtest
https://cppget.org/doctest
https://cppget.org/libboost-test
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

If upstream has multiple test executables, then they could all be in a single test subdirectory

(potentially reusing some common bits) or spread over multiple subdirectories. In both cases

it’s a good idea to follow the upstream structure unless you have good reasons to deviate. In

the former case (all executables in the same subdirectory), you can re-purpose the smoke test

subdirectory. In the latter case (each executable in a separate subdirectory) you can make

copies of the smoke test subdirectory.

Do upstream tests use an internal utility library?

If there are multiple test executables and they need to share some common functionality,

then it’s not unusual for upstream to place such functionality into a static library and then

link it to each test executable. In build2 such an internal library is best represented with a

utility library (see Implementing Unit Testing for details). See the following section for an

example.

Are upstream tests well behaved?

Unfortunately, it’s not uncommon for upstream tests not to behave well, such as to write

diagnostics to stdout instead of stderr, create temporary files without cleaning them

up, or assume presence of input files in the current working directory. For details on how to

deal with such situations see How do I sanitize the execution of my tests?

2.6.2 Convert smoke test to upstream tests

Once you have a good grasp of how upstream tests work, convert or replace the smoke test with

the upstream tests. If upstream has multiple test executables, you may want to deal with one test

at a time, making sure that it passes before moving to the next one.

It’s normally a good idea to use the smoke test buildfile as a starting point for upstream tests.

To recap, the smoke test buildfile for our libfoo example ended up looking like this:

import libs = libfoo%lib{foo}

exe{driver}: {hxx cxx}{**} $libs

At a minimum you will most likely need to change the name of the executable to match upstream.

If you need to build multiple executables in the same directory, then it’s probably best to get rid

of the name pattern for the source files and specify the prerequisite names explicitly, for example:

import libs = libfoo%lib{foo}

./: exe{test1}: cxx{test1} $libs

./: exe{test2}: cxx{test2} $libs

Revision 0.17, June 202456 The build2 Packaging Guide

2.6.2 Convert smoke test to upstream tests

https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

If you have a large number of such test executables, then a for-loop might be a more scalable

option:

import libs = libfoo%lib{foo}

for src: cxx{test*}
 ./: exe{$name($src)}: $src $libs

If the upstream tests have some common functionality that is used by all the test executables, then

it is best placed into a utility library. For example:

import libs = libfoo%lib{foo}

./: exe{test1}: cxx{test1} libue{common}

./: exe{test2}: cxx{test2} libue{common}

libue{common}: {hxx cxx}{common} $libs

2.6.3 Test locally

With the upstream tests ready, we re-do the same end-to-end testing as we did with the smoke

test:

Test locally

Test locally: installation

Test locally: distribution

2.6.4 Commit and test with CI

With local testing complete, we commit our changes and submit a remote CI job. This step is

similar to what we did for the smoke test but this time we are using the upstream tests:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add upstream tests"
$ git push

$ bdep ci

2.7 Add upstream examples, benchmarks, if any

If the upstream project provides examples and/or benchmarks and you wish to add them to the

build2 build (which is not strictly necessary for the build2 package to be usable), then now

is a good time to do that.

57Revision 0.17, June 2024 The build2 Packaging Guide

2.7 Add upstream examples, benchmarks, if any

As was mentioned in Review and test auto-generated buildfile templates, the recommended

approach is to copy the tests/ subproject (potentially from the commit history before the

smoke test was replaced with the upstream tests) and use that as a starting point for examples

and/or benchmarks. Do not forget to add the corresponding entry in the root buildfile.

Once that is done, follow the same steps as in Replace smoke test with upstream tests to add

upstream examples/benchmarks and test the result.

2.8 Adjust root files (buildfile, manifest, etc)

The last few files that we need to review and potentially adjust are the root buildfile,

package manifest, and PACKAGE-README.md.

2.8.1 Adjust root buildfile

The main function of the root buildfile is to pull in all the subdirectories that need building

plus list targets that are usually found in the root directory of a project, typically README.md,

LICENSE, etc. This is what the generated root buildfile looks like for our libfoo project

assuming we have symlinked README.md, LICENSE, and NEWS from upstream in the Create

final package step:

./: {*/ -build/} \
 doc{README.md PACKAGE-README.md NEWS} \
 legal{LICENSE} manifest

Don’t install tests.
#
tests/: install = false

If the upstream project provides any other documentation (detailed change logs, contributing

guidelines, etc) or legal files (alternative licenses, list of authors, code of conduct, etc), then you

may want to symlink and list them as the doc{} and legal{} prerequisites, respectively.

If you are packaging an executable and it provides a man page, then it can also be listed in the

root buildfile. For example, if the man page file is called foo.1:

./: ... man1{foo}

One file you don’t need to list is INSTALL (or equivalent) which normally contains the installa­

tion instructions for the upstream build system. In the build2 package of a third-party project

the PACKAGE-README.md file serves this purpose (see Adjust PACKAGE-README.md for

details).

Revision 0.17, June 202458 The build2 Packaging Guide

2.8 Adjust root files (buildfile, manifest, etc)

2.8.2 Adjust root buildfile: other subdirectories

If the upstream project has other subdirectories that makes sense to include into the build2
package, then now is a good time to take care of that. The most common such case will be extra

documentation (besides the root README), typically in a subdirectory called doc/, docs/, or

documentation/.

The standard procedure for handling such subdirectories will be to symlink the relevant files (or

the entire subdirectory) and then list the files as prerequisites. For this last step, there are two

options: we can list the files directly in the root buildfile or we can create a separate

buildfile in the subdirectory.

If symlinking entire subdirectories, don’t forget to also list them in .gitattributes if you

want your package to be usable from the git repository directly on Windows. See Symlinks and

Windows for details.

Let’s examine each approach using our libfoo as an example. We will assume that the

upstream project contains the docs/ subdirectory with additional *.md files that document the

library’s API. It would make sense to include them into the build2 package.

Listing the subdirectory files directly in the root buildfile works best for simple cases, where

you have a bunch of static files that don’t require any special provisions, such as customizations

to their installation locations. In this case we can symlink the entire docs/ subdirectory:

$ cd libfoo/ # Change to the package root.
$ ln -s ../upstream/docs ./

The adjustments to the root buildfile are pretty straightforward: we exclude the docs/

subdirectory (since it has no buildfile) and list the *.md files as prerequisites using the

doc{} target type (which, in particular, makes sure they are installed into the appropriate loca­

tion):

./: {*/ -build/ -docs/} \
 doc{README.md PACKAGE-README.md NEWS} \
 docs/doc{*.md} \
 legal{LICENSE} manifest

The alternative approach (create a separate buildfile) is a good choice if things are more

complicated than that. Let’s say we need to adjust the installation location of the files in docs/
because there is another README.md inside and that would conflict with the root one when

installed into the same location. This time we cannot symlink the top-level docs/ subdirectory

(because we need to place a buildfile there). The two options here are to either symlink the

individual files or introduce another subdirectory level inside docs/ (which is the same

approach as discussed in Don’t build your main targets in the root buildfile). Let’s illustrate

both sub-cases.

59Revision 0.17, June 2024 The build2 Packaging Guide

2.8.2 Adjust root buildfile: other subdirectories

https://build2.org/article/symlinks.xhtml#windows
https://build2.org/article/symlinks.xhtml#windows

Symlinking individual files works best when you don’t expect the set of files to change often. For

example, if docs/ contains a man page and its HTML rendering, then it’s unlikely this set will

change. On the other hand, if docs/ contains a manual split into an .md file per chapter, then

there is a good chance this set of files will fluctuate between releases.

Continuing with our libfoo example, this is how we symlink the individual *.md files in

docs/:

$ cd libfoo/ # Change to the package root.
$ mkdir docs
$ cd docs/
$ ln -s ../../upstream/docs/*.md ./

Then write a new buildfile in docs/:

./: doc{*.md}

Install the documentation in docs/ into the manual/ subdirectory of,
say, /usr/share/doc/libfoo/ since we cannot install both its and root
README.md into the same location.
#
doc{*.md}: install = doc/manual/

Note that we don’t need to make any changes to the root buildfile since this subdirectory

will automatically get picked up by the {*/ -build/} name pattern that we have there.

Let’s now look at the alternative arrangement with another subdirectory level inside docs/.

Here we achieve the same result but in a slightly different way. Specifically, we call the subdirec­

tory manual/ and install recreating subdirectories (see Installing for background):

$ cd libfoo/ # Change to the package root.
$ mkdir -p docs/manual
$ cd docs/manual/
$ ln -s ../../../upstream/docs/*.md ./

And the corresponding buildfile in docs/:

./: doc{**.md}

Install the documentation in docs/ into, say, /usr/share/doc/libfoo/
recreating subdirectories.
#
doc{*}:
{
 install = doc/
 install.subdirs = true
}

Revision 0.17, June 202460 The build2 Packaging Guide

2.8.2 Adjust root buildfile: other subdirectories

Yet another option would be to open a scope for the docs/ subdirectory directly in the root

buildfile (see Output Directories and Scopes for background). For example:

$ cd libfoo/ # Change to the package root.
$ ln -s ../upstream/docs ./

And then add the following to the root buildfile:

docs/
{
 ./: doc{*.md}

 # Install the documentation in docs/ into the manual/ subdirectory
 # of, say, /usr/share/doc/libfoo/ since we cannot install both its
 # and root README.md into the same location.
 #
 doc{*.md}: install = doc/manual/
}

However, this approach should be used sparingly since it can quickly make the root buildfile
hard to comprehend. Note also that it cannot be used for main targets since an export stub

requires a buildfile to load (see Don’t build your main targets in the root buildfile for

details).

2.8.3 Adjust root buildfile: commit and test

Once all the adjustments to the root buildfile are made, it makes sense to test it locally (this

time from the root of the package), commit our changes, and test with CI:

$ cd libfoo/ # Change to the package root.
$ b test
$ bdep test -a

If you had to add any extra files to the root buildfile (or add buildfiles in extra subdi­

rectories), then it also makes sense to test the installation (Test locally: installation) and the

preparation of the source distribution (Test locally: distribution) to make sure the extra files end

up in the right places.

Then commit our changes and CI:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust root buildfile"
$ git push

$ bdep ci

61Revision 0.17, June 2024 The build2 Packaging Guide

2.8.3 Adjust root buildfile: commit and test

2.8.4 Adjust manifest

The next file we need to look over is the package’s manifest. Here is what it will look like,

using our libfoo as an example:

: 1
name: libfoo
version: 2.1.0-a.0.z
language: c++
project: foo
summary: C++ library implementing secure Foo protocol
license: MIT ; MIT License.
description-file: README.md
package-description-file: PACKAGE-README.md
changes-file: NEWS
url: https://example.org/upstream
email: upstream@example.org
package-url: https://github.com/build2-packaging/foo
package-email: packaging@build2.org ; Mailing list.
depends: * build2 >= 0.16.0
depends: * bpkg >= 0.16.0

You can find the description of these and other package manifest values in Package Manifest

(the manifest format is described in Manifest Format).

In the above listing the values that we likely need to adjust are summary and license, unless

correctly auto-detected by bdep-new in the Create final package step. See Adjust manifest:

summary and Adjust manifest: license below for guidelines on changing these values.

It is not uncommon for projects to be licensed under multiple licenses. Note, however, that

bdep-new will only detect one license and you will need to specify any additional licenses

manually.

We will also need to change url and email with the upstream project’s homepage URL and

e-mail, respectively. If upstream doesn’t have a dedicated website for the project, then use its

repository URL on GitHub or equivalent. For e-mail you would normally use a mailing list

address. If upstream doesn’t have any e-mail contacts, then you can drop this value from the

manifest. The package-url and package-email values normally do not need to be

changed.

packaging@build2.org is a mailing list for discussions related to the packaging efforts of

third-party projects.

Note also that while you may be tempted to adjust the version value, resist this temptation

since this will be done automatically by bdep-release(1) later.

Revision 0.17, June 202462 The build2 Packaging Guide

2.8.4 Adjust manifest

https://lists.build2.org/

You may also want to add the following values in certain cases:

changes-file

If you have added any extra news of changelog files to the root buildfile (see Adjust

root buildfile), then it may also make sense to list them in the manifest. For example:

changes-file: ChangeLog.txt

topics

Package topics. For example:

topics: network protocol, network security

If the upstream project is hosted on GitHub or similar, then you can usually copy the topics

from the upstream repository description.

doc-url

src-url

Documentation and source code URLs. For example:

doc-url: https://example.org/foo/doc/
src-url: https://github.com/.../foo

2.8.5 Adjust manifest: summary

For summary use a brief description of the functionality provided by the library or executable.

Less than 70 characters is a good target to aim for. Don’t capitalize subsequent words unless

proper nouns and omit the trailing dot. For example:

summary: Vim xxd hexdump utility

Omit weasel words such as "modern", "simple", "fast", "small", etc., since they don’t convey

anything specific. Omit "header-only" or "single-header" for C/C++ libraries since, at least in the

context of build2, it does not imply any benefit.

If upstream does not offer a sensible summary, the following template is recommended for

libraries:

summary: <functionality> C library
summary: <functionality> C++ library

For example:

summary: Event notification C library
summary: Validating XML parsing and serialization C++ library

63Revision 0.17, June 2024 The build2 Packaging Guide

2.8.5 Adjust manifest: summary

If the project consists of multiple packages, it may be tempting to name each package in terms of

the overall project name, for example:

name: libigl-core
summary: libigl core module

This doesn’t give the user any clue about what functionality is provided unless they find out what

libigl is about. Better:

summary: Geometry processing C++ library, core module

If you follow the above pattern, then to produce a summary for external tests or examples pack­

ages simply add "tests" or "examples" at the end, for example:

summary: Event notification C library tests
summary: Geometry processing C++ library, core module examples

2.8.6 Adjust manifest: license

For license, use the SPDX license ID if at all possible. If multiple licenses are involved, use

the SPDX License expression. See the license manifest value documentation for details,

including the list of the SPDX IDs for the commonly used licenses.

2.8.7 Adjust manifest: commit and test

Once all the adjustments to the manifest are made, it makes sense to test it locally, commit our

changes, and test with CI:

$ cd libfoo/ # Change to the package root.
$ b test
$ bdep test -a

Then commit our changes and CI:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust manifest"
$ git push

$ bdep ci

2.8.8 Adjust PACKAGE-README.md

The last package file we need to adjust is PACKAGE-README.md which describes how to use

the package from a build2-based project. The template generated by bdep-new establishes

the recommended structure and includes a number of placeholders enclosed in < >, such as

<UPSTREAM-NAME> and <SUMMARY-OF-FUNCTIONALITY>, that need to be replaced with

Revision 0.17, June 202464 The build2 Packaging Guide

2.8.6 Adjust manifest: license

https://spdx.org/licenses/
https://build2.org/bpkg/doc/build2-package-manager-manual.xhtml#manifest-package-license

the package-specific content. While all the placeholders should be self-explanatory, below are a

couple of guidelines.

For <SUMMARY-OF-FUNCTIONALITY> it’s best to copy a paragraph or two from the upstream

documentation, usually from README.md or the project’s web page.

If the bdep new command was able to extract the summary from upstream README, then the

summary in the heading (first line) will contain that information. Otherwise, you would need to

adjust it manually, similar to manifest above. In this case use the summary value form the

manifest, perhaps slightly shortened.

If the package contains a single importable target, as is typical with libraries, then it makes sense

to drop the "Importable targets" section since it won’t add anything that hasn’t already been said

in the "Usage" section.

Similarly, if the package has no configuration variables, then it makes sense to drop the "Config­

uration variables" section.

For inspiration, see

PACKAGE-README.md in zstd and PACKAGE-README.md in libevent (libraries) as

well as PACKAGE-README.md in zstd and README.md in xxd (executables).

If upstream does not provide a README file, then it makes sense to rename

PACKAGE-README.md to just README.md in the build2 package, as was done in the xxd
package mentioned above.

Once PACKAGE-README.md is ready, commit and push the changes. You may also want to

view the result on GitHub to make sure everything is rendered correctly.

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust PACKAGE-README.md"
$ git push

2.9 Adjust package repository README.md

With all the package files taken care of, the last file we need to adjust is README.md in the root

of our package repository (it was created in the Initialize package repository with bdep new

step).

If you need to add additional packages and are doing this one package at a time (for example, first

library then executable in the "library and executable" project), then this is the point where you

would want to restart from Create package and generate buildfile templates for another itera­

65Revision 0.17, June 2024 The build2 Packaging Guide

2.9 Adjust package repository README.md

https://github.com/build2-packaging/zstd/blob/master/libzstd/PACKAGE-README.md
https://github.com/build2-packaging/zstd
https://github.com/build2-packaging/libevent/blob/main/PACKAGE-README.md
https://github.com/build2-packaging/libevent
https://github.com/build2-packaging/zstd/blob/master/zstd/PACKAGE-README.md
https://github.com/build2-packaging/zstd
https://github.com/build2-packaging/xxd/blob/master/xxd/README.md
https://github.com/build2-packaging/xxd

tion. Only once all the packages are added does it make sense to continue with updating this

README.md.

The primary purpose of the package repository README.md is to provide setup instructions as

well as any other relevant information for the development of the packages as opposed to their

consumption. However, it’s also a good idea to give a brief summary of what this repository is

about and to point users interested in consumption to the PACKAGE-README.md files.

The template generated by bdep new establishes the recommended structure to achieve these

objectives. It includes a number of placeholders enclosed in < >, such as <UPSTREAM-URL>
and <SUMMARY-OF-FUNCTIONALITY>, that need to be replaced with the repository-specific

content. While all the placeholders should be self-explanatory, below are a couple of guidelines.

If there is a single package, then <SUMMARY> in the heading can be the same as in

PACKAGE-README.md. If there are multiple packages, then use an overall summary of the

upstream project.

For <SUMMARY-OF-FUNCTIONALITY> it’s best to copy a paragraph or two from the upstream

documentation, usually from README.md or the project’s web page. Again, for a single

package, this can be copied directly from PACKAGE-README.md.

If there are multiple packages in the repository, then it’s recommended to replace a single link to

PACKAGE-README.md with a list of links (this also shows the available packages). For

example:

... If you want to use ‘foo‘ in your ‘build2‘-based project, then
instead see the accompanying ‘PACKAGE-README.md‘ files:

* [‘libfoo/PACKAGE-README.md‘](libfoo/PACKAGE-README.md)
* [‘foo/PACKAGE-README.md‘](foo/PACKAGE-README.md)

The remainder of the generated README.md file are the standard bdep initialization instruc­

tions. Adjust them if your package repository requires anything special (for example, a host

configuration). This is also the place to mention anything unusual, such as that upstream does not

use semver (and thus only a subset of bdep functionality is usable).

For inspiration, see README.md in the zstd package repository.

Once the repository README.md is ready, commit and push the changes. You may also want to

view the result on GitHub to make sure everything is rendered correctly.

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust package repository README.md"
$ git push

Revision 0.17, June 202466 The build2 Packaging Guide

2.9 Adjust package repository README.md

https://github.com/build2-packaging/zstd/blob/master/README.md
https://github.com/build2-packaging/zstd

2.10 Release and publish

Once all the adjustments are in and everything is tested, we can release the final version of the

package and then publish it to cppget.org. Both of these steps are automated with the correspond­

ing bdep commands. But before performing these steps we need to transfer the package reposi­

tory to github.com/build2-packaging.

2.10.1 Transfer package repository

If you have been doing your work in a repository in your personal workspace, then now is the

time to transfer it to the github.com/build2-packaging organization.

It is important to transfer the repository before publishing the first version of the package since

the repository is used as a proxy for package name ownership (see bdep-publish(1) for

details). If you publish the package from your personal workspace and then transfer the reposi­

tory, the ownership information will have to be adjusted manually, which we would prefer to

avoid.

The first step is to become a member of this organization (unless you already are). This will give

you permissions to create new repositories, which is required to perform a transfer (you will also

have full read/write access to the repository once transferred). To get an invite, get in touch not

forgetting to mention your GitHub user name.

If your repository has any prefixes, such as build2-, or suffixes such as -package, then the

next step is to rename it to follow the Use upstream repository name as package repository name

guideline. Go to the repository’s Settings on GitHub where you should see the Rename button.

Finally, to perform the transfer, go to the repository’s Settings, Danger Zone section, where you

should see the Transfer button. Select build2-packaging as the organization to transfer to,

and complete the transfer.

Once transferred, you will be considered the maintainer of this package going forward. If other

members of the build2-packaging organization wish to participate in the package mainte­

nance, the correct etiquette is to do this via pull requests. However, if you lose interest in main­

taining a package or otherwise become unresponsive, we may allow a new maintainer to take

over this role.

In extraordinary circumstances the build2-packaging administrators may make direct

changes to the package, for example, to release a new revision in order to address a critical issue.

They will still try to coordinate the changes with the maintainer but may not always be able to

wait for a response in time-sensitive cases.

67Revision 0.17, June 2024 The build2 Packaging Guide

2.10 Release and publish

https://cppget.org/
https://github.com/build2-packaging
https://github.com/build2-packaging
https://build2.org/community.xhtml#help

2.10.2 Release final version

As you may recall, our package currently has a pre-release snapshot version of the upstream

version (see Adjust package version). Once all the changes are in, we can change to the final

upstream version, in a sense signaling that this package version is ready.

If you are working in a branch, then now is also the time to merge it into master (or equiva­

lent).

The recommended way to do this is with the bdep-release(1) command (see Versioning

and Release Management for background). Besides replacing the version value in the package

manifest file, it also commits this change, tags it with the vX.Y.Z tag, and can be instructed

to push the changes (or show the git command to do so). This command also by default "opens"

the next development version, which is something that we normally want for our own projects but

not when we package a third-party one (since we cannot predict which version upstream will

release next). So we disable this functionality. For example:

$ cd foo/ # Change to the package repository root.
$ bdep release --no-open --show-push

Then review the commit made by bdep-release and, if everything looks good, push the

changes by copying the command that it printed:

$ git diff HEAD~1
$ git push ...

If something is wrong and you need to undo this commit, don’t forget to also remove the tag.

Note also that once you have pushed your changes, you cannot undo the commit. Instead, you

will need to make a revision. See Version management for background and details.

2.10.3 Publish released version

Once the version is released we can publish the package to cppget.org with the

bdep-publish(1) command (see Versioning and Release Management for background):

$ cd foo/ # Change to the package repository root.
$ bdep publish

The bdep-publish command prepares the source distribution of your package, uploads the

resulting archive to the package repository, and prints a link to the package submission in the

queue. Open this link in the browser and check that there are no surprises in the build results

(they should match the earlier CI results) or in the displayed package information

(PACKAGE-README.md, etc).

Revision 0.17, June 202468 The build2 Packaging Guide

2.10.2 Release final version

https://cppget.org/

While there should normally be no discrepancies in the build results compared to our earlier CI

submissions, the way the packages are built on CI and in the package repository are not exactly

the same. Specifically, CI builds them from git while the package repository – from the submit­

ted package archives. If there are differences, it’s almost always due to issues in the source distri­

bution preparation (see Test locally: distribution).

If everything looks good, then you are done: the package submission will be reviewed and, if

there are no problems, moved to cppget.org. If there are problems, then an issue will be created in

the package repository with the review feedback. In this case you will need to release and publish

a version revision to address any problems. However, in both cases, you should first read through

the following Package version management section to understand the recommended "version life­

cycle" of a third-party package.

Also, if there is an issue for this package in github.com/build2-packaging/WISHLIST, then you

would want to add a comment and close it once the package has been moved to cppget.org.

2.11 Package version management

Once we have pushed the release commit, in order to preserve continuous versioning (see Adjust

package version for background), no further changes should be made to the package without also

changing its version.

More precisely, you can make and commit changes without changing the version provided they

don’t affect the package. For example, you may keep a TODO file in the root of your repository

which is not part of any package. Updating such a file without changing the version is ok since

the package remains unchanged.

While in our own projects we can change the versions as we see fit, with third-party projects the

versions are dictated by upstream and as a result we are limited to what we can use to fix issues in

our packaging work itself. It may be tempting (and perhaps even conceptually correct) to release

a patch version for our own fixes, however, we will be in trouble if later upstream releases the

same patch version but with a different set of changes (plus the users of our package may wonder

where did this version come from). As a result, we should only change the major, minor, or patch

components of the package version in response to the corresponding upstream releases. For fixes

to the packaging work itself we should instead use version revisions.

Because a revision replaces the existing version, we should try to limit revision changes to bug

fixes and preferably only in the package "infrastructure" (buildfiles, manifest, etc). Fixes

to upstream source code should be limited to critical bugs and be preferably backported from

upstream. To put it another way, changes in a revision should have an even more limited scope

than a patch release.

69Revision 0.17, June 2024 The build2 Packaging Guide

2.11 Package version management

https://cppget.org/
https://github.com/build2-packaging/WISHLIST
https://cppget.org/

Based on this, the recommended "version lifecycle" for a third-party package is as follows:

1. After a release (the Release final version step above), for example, version 2.1.0, the

package enters a "revision phase" where we can release revisions (2.1.0+1, 2.1.0+2,

etc) to address any issues in the packaging work. See New revision for the detailed proce­

dure.

2. When a new upstream version is released, for example version 2.2.0, and we wish to

upgrade our package to this version, we switch to its pre-release snapshot version

(2.2.0-a.0.z) the same way as we did in the Adjust package version step initially. See

New version for the detailed procedure.

3. Once we are done upgrading to the new upstream version, we release the final version just

like in the Release final version step initially. At this point the package enters another revi­

sion phase.

Note also that in the above example, once we have switched to 2.2.0-a.0.z, we cannot go

back and release another revision or patch version for 2.1.0 on the current branch. Instead, we

will need to create a separate branch for the 2.1.Z release series and make a revision or patch

version there. See New version/revision in old release series for the detailed procedure.

2.11.1 New revision

As discussed in Package version management, we release revisions to fix issues in the package

"infrastructure" (buildfiles, manifest, etc) as well as critical bugs in upstream source

code.

Releasing a new revision is also a good opportunity to review and fix any accumulated issues that

didn’t warrant a revision on their own. See New version: review/fix accumulated issues for back­

ground.

In the revision phase of the package version lifecycle (i.e., when the version does not end with

-a.0.z), every commit must be accompanied by the revision increment to maintain continuous

versioning. As a result, each revision release commit necessarily also contains the changes in this

revision. Below is a typical workflow for releasing and publishing the revision:

$ # make changes
$ # test locally
$ git add .
$ bdep release --revision --show-push
$ # review commit
$ git push ...
$ # test with CI
$ bdep publish

Revision 0.17, June 202470 The build2 Packaging Guide

2.11.1 New revision

Customarily, the revision commit message has the "Release version X.Y.Z+R"
summary as generated by bdep-release followed by the description of changes, organized in

a list if there are several. For example:

Release version 2.1.0+1

- Don’t compile port/strlcpy.c on Linux if GNU libc is 2.38 or newer
 since it now provides the strl*() functions.

- Switch to using -pthread instead of -D_REENTRANT/-lpthread.

The fact that all the changes must be in a single commit is another reason to avoid substantial

changes in revisions.

Note also that you can make multiple commits while developing and testing the changes for a

revision in a separate branch. However, once they are ready for a release, they need to be

squashed into a single commit. The bdep-release(1) command provides the --amend and

--squash options to automate this. For example, here is what a workflow with a separate

branch might look like:

$ git checkout -b wip-2.1.0+1

$ # make strl*() changes
$ # test locally
$ git commit -a -m "Omit port/strlcpy.c if glibc 2.38 or newer"
$ git push -u
$ # test with CI

$ # make pthread changes
$ # test locally
$ git commit -a -m "Switch to using -pthread"
$ git push
$ # test with CI

$ git checkout master
$ git merge --ff-only wip-2.1.0+1
$ bdep release --revision --show-push --amend --squash 2
$ # review commit
$ # test locally
$ git push ...
$ # test with CI
$ bdep publish

2.11.2 New version

As discussed in Package version management, we release new versions strictly in response to the

corresponding upstream releases.

71Revision 0.17, June 2024 The build2 Packaging Guide

2.11.2 New version

The amount or work required to upgrade a package to a new upstream version depends on the

extend of changes in the new version.

On one extreme you may have a patch release which fixes a couple of bugs in the upstream

source code without any changes to the set of source files, upstream build system, etc. In such

cases, upgrading a package is a simple matter of creating a new work branch, pointing the

upstream git submodule to the new release, running tests, and then merging, releasing, and

publishing a new package version.

On the other extreme you may have a new major upstream release which is essentially a

from-scratch rewrite with new source code layout, different upstream build system, etc. In such

cases it may be easier to likewise start from scratch. Specifically, create a new work branch, point

the upstream git submodule to the new release, delete the existing package, and continue

from Create package and generate buildfile templates.

Most of the time, however, it will be something in between where you may need to tweak a few

things here and there, such as adding symlinks to new source files (or removing old ones), tweak­

ing the buildfiles to reflect changes in the upstream build system, etc.

The following sections provide a checklist-like sequence of steps that can be used to review

upstream changes with links to the relevant earlier sections in case adjustments are required.

2.11.3 New version: create new work branch

When upgrading a package to a new upstream version it’s recommended to do this in a new work

branch which, upon completion, is merged into master (or equivalent). For example, if the new

upstream version is 2.2.0:

$ git checkout -b wip-2.2.0

If you are not the maintainer of the package and would like to help with preparing the new

version, then, when everything is ready, use this branch to create a pull request instead of

merging it directly.

2.11.4 New version: open new version

This step corresponds to Adjust package version during the initial packaging. Here we can make

use of the bdep-release command to automatically open the new version and make the corre­

sponding commit. For example, if the new upstream version is 2.2.0:

$ bdep release --open --no-push --open-base 2.2.0

Revision 0.17, June 202472 The build2 Packaging Guide

2.11.3 New version: create new work branch

2.11.5 New version: update upstream submodule

This step corresponds to Add upstream repository as git submodule during the initial packaging.

Here we need to update the submodule to point to the upstream commit that corresponds to the

new version.

For example, if the upstream release tag we are interested in is called v2.2.0, to update the

upstream submodule to point to this release commit, run the following commands:

$ cd upstream/
$ git fetch
$ git checkout v2.2.0
$ cd ../

$ git add .
$ git status
$ git commit -m "Update upstream submodule to 2.2.0"

2.11.6 New version: review upstream changes

At this point it’s a good idea to get an overview of the upstream changes between the two releases

in order to determine which adjustments are likely to be required in the build2 package. We

can use the upstream submodule for that, which contains the change history we need.

One way to get an overview of changes between the releases is to use a graphical repository

browser such as gitk and view a cumulative diff of changes between the two versions. For

example, assuming the latest packaged version is tagged v2.1.0 and the new version is tagged

v2.2.0:

$ cd upstream/
$ gitk v2.1.0..v2.2.0 &

Then click on the commit tagged v2.2.0, scroll down and right-click on the commit tagged

v2.1.0, and select the "Diff this -> selected" menu item. This will display the cumulative set of

changes between these two upstream versions. Review them looking for the following types of

changes in particular (discussed in the following sections):

Changes to the source code layout.

New dependencies being added or old removed.

New source files being added or old removed (including in tests, etc).

Changes to the upstream build system.

Other new files/subdirectories being added or old removed.

73Revision 0.17, June 2024 The build2 Packaging Guide

2.11.5 New version: update upstream submodule

2.11.7 New version: layout changes

As mentioned earlier, for drastic layout changes it may make sense to start from scratch and

re-generate the package with the bdep-new command (use Decide on the package source code

layout as a starting point). On the other hand, if the changes are minor, then you can try to adjust

things manually. An in-between strategy is to generate the new layout using bdep-new on the

side and then retrofit the relevant changes in buildfiles to the existing package. In a sense,

this approach uses bdep-new as a guide to figure out how to implement the new layout.

2.11.8 New version: new/old dependencies

If upstream added new or removed old dependencies, then you will need to replicate these

changes in your package as in the Add dependencies and Adjust source buildfile: dependen­

cies initial packaging steps.

2.11.9 New version: new/old source files

If upstream added new or removed old source files, then you will need to replicate these changes

in your package as in the Fill with upstream source code and possibly Adjust header build­
file and Adjust source buildfile: sources, private headers initial packaging steps.

Also don’t forget about tests, examples, etc., which may also add new or remove old source files

(typically new tests). See Convert smoke test to upstream tests.

If there are any manual modifications to the upstream source code, then you will also need to

re-apply them to the new version as discussed in Modifying upstream source code manually.

2.11.10 New version: changes to build system

If upstream changed anything in the build system, then you may need to replicate these changes

in your package’s buildfiles. The relevant initial packaging steps are: Adjust project-wide

build system files in build/ and Adjust source buildfile: build and export options.

The corresponding steps for tests are: Adjust project-wide build system files in tests/build/
and Convert smoke test to upstream tests.

2.11.11 New version: other new/old files/subdirectories

If upstream added or removed any other files or subdirectories that are relevant to our package

(such as documentation), then adjust the package similar to the Adjust root buildfile and

Adjust root buildfile: other subdirectories initial packaging steps.

Revision 0.17, June 202474 The build2 Packaging Guide

2.11.7 New version: layout changes

2.11.12 New version: review manifest and PACKAGE-README.md

It makes sense to review the package manifest (Adjust manifest) and

PACKAGE-README.md (Adjust PACKAGE-README.md) for any updates.

2.11.13 New version: review repository README.md

If any new packages were added in this version or if there are any changes to the development

workflow, then it makes sense to review and if necessary update package repository README.md

(Adjust package repository README.md).

2.11.14 New version: review/fix accumulated issues

When a bug is identified in an already released package version, we may not always be able to fix

it immediately (for example, by releasing a revision). This could be because the change is too

extensive/risky for a revision or simply not critical enough to warrant a release. In such cases it’s

recommended to file an issue in the package repository with the view to fix it when the next

opportunity arises. Releasing a new upstream version is one such opportunity and it makes sense

to review any accumulated package issues and see if any of them could be addressed.

2.11.15 New version: test locally and with CI

Once all the adjustments are in, test the package both locally and with CI similar to how we did it

during the initial packaging after completing the smoke test:

Test locally

Test locally: installation

Test locally: distribution

Commit and test with CI

2.11.16 New version: merge, release, and publish

When the new version of the package is ready to be released, merge the work branch to master
(or equivalent):

$ git checkout master
$ git merge --ff-only wip-2.2.0

Then release and publish using the same steps as after the initial packaging: Release and publish.

75Revision 0.17, June 2024 The build2 Packaging Guide

2.11.12 New version: review manifest and PACKAGE-README.md

2.11.17 New version/revision in old release series

As discussed in Package version management, if we have already switched to the next upstream

version in the master (or equivalent) branch, we cannot go back and release a new version or

revision for an older release series on the same branch. Instead, we need to create a separate,

long-lived branch for this work.

As an example, let’s say we need to release another revision or a patch version for an already

released 2.1.0 while our master branch has already moved on to 2.2.0. In this case we

create a new branch, called 2.1, to continue with the 2.1.Z release series. The starting point of

this branch should be the latest released version/revision in the 2.1 series. Let’s say in our case it

is 2.1.0+2, meaning we have released two revisions for 2.1.0 on the master branch before

upgrading to 2.2.0. Therefore we use the v2.1.0+2 release tag to start the 2.1 branch:

$ git checkout -b 2.1 v2.1.0+2

Once this is done, we continue with the same steps as in New revision or New version except that

we never merge this branch to master. If we ever need to release another revision or version in

this release series, then we continue using this branch. In a sense, this branch becomes the equiva­

lent of the master branch for this release series and you should treat it as such (once published,

never delete, rewrite its history, etc).

It is less likely but possible that you may need to release a new minor version in an old release

series. For example, the master branch may have moved on to 3.0.0 and you want to release

2.2.0 after the already released 2.1.0. In this case it makes sense to call the branch 2 since it

corresponds to the 2.Y.Z release series. If you already have the 2.1 branch, then it makes sense

to rename it to 2.

3 What Not to Do

This chapter describes the common anti-patterns along with the recommended alternative

approaches.

3.1 Don’t write buildfiles from scratch, use bdep-new

Unless you have good reasons not to, create the initial project layout automatically using

bdep-new(1), then tweak it if necessary and fill with upstream source code.

The main rationale here is that there are many nuances in getting the build right and auto-gener­

ated buildfiles had years of refinement and fine-tuning. The familiar structure also makes it

easier for others to understand your build, for example while reviewing your package submission

or helping out with the package maintenance.

Revision 0.17, June 202476 The build2 Packaging Guide

3 What Not to Do

The bdep-new(1) command supports a wide variety of source layouts. While it may take a bit

of time to understand the customization points necessary to achieve the desired layout for your

first package, this will pay off in spades when you work on converting subsequent packages.

See Craft bdep new command line to create package for details.

3.2 Avoid fixing upstream issues in the build2 package

Any deviations from upstream makes the build2 package more difficult to maintain. In particu­

lar, if you make a large number of changes to the upstream source code, releasing a new version

will require a lot of work. As a result, it is recommended to avoid fixing upstream issues in the

build2 package. Instead, try to have the issues fixed upstream and wait for them to be released

as a new version.

Sometimes, however, you may have no choice. For example, upstream is inactive or has no plans

to release a new version with your fixes any time soon. Or you may want to add support for a

platform/compiler that upstream is not willing or capable of supporting.

Note that even if you do fix some issues in the build2 package directly, try hard to also incor­

porate them upstream so that you don’t need to maintain the patches forever.

See also Avoid changing upstream source code layout and How do I patch upstream source code?

3.3 Avoid changing upstream source code layout

It’s a good idea to stay as close to the upstream’s source code layout as possible. For background

and rationale, see Decide on the package source code layout.

3.4 Don’t make library header-only if it can be compiled

Some libraries offer two alternative modes: header-only and compiled. Unless there are good

reasons not to, a build2 build of such a library should use the compiled mode.

Some libraries use the precompiled term to describe the non-header-only mode. We don’t recom­

mend using this term in the build2 package since it has a strong association with precompiled

headers and can therefore be confusing. Instead, use the compiled term.

The main rationale here is that a library would not be offering a compiled mode if there were no

benefits (usually faster compile times of library consumers) and there is no reason not to take

advantage of it in the build2 package.

77Revision 0.17, June 2024 The build2 Packaging Guide

3.2 Avoid fixing upstream issues in the build2 package

There are, however, valid reasons why a compiled mode cannot be used, the most common of

which are:

The compiled mode is not well maintained/tested by upstream and therefore offers inferior

user experience.

The compiled mode does not work on some platforms, usually Windows due to the lack of

symbol export support (but see Automatic DLL Symbol Exporting).

Uses of the compiled version of the library requires changes to the library consumers, for

example, inclusion of different headers.

If a compiled mode cannot always be used, then it may be tempting to support both modes by

making the mode user-configurable. Unless there are strong reasons to, you should resist this

temptation and, if the compiled mode is not universally usable, then use the header-only mode

everywhere.

The main rationale here is that variability adds complexity which makes the result more prone to

bugs, more difficult to use, and harder to review and maintain. If you really want to have the

compiled mode, then the right way to achieve it is to work with upstream to fix any issues that

prevent its use in build2.

There are, however, valid reasons why supporting both modes may be needed, the most common

of which are:

The library is widely used in both modes but switching from one mode to the other requires

changes to the library consumers (for example, inclusion of different headers). In this case

only supporting one mode would mean not supporting a large number of library consumers.

The library consists of a large number of independent components while its common for

applications to only use a small subset of them. And compiling all of them in the compiled

mode takes a substantial amount of time. Note that this can alternatively be addressed by

making the presence of optional components user-configurable.

3.5 Don’t bundle dependencies

Sometimes third-party projects bundle their dependencies with their source code (also called

vendoring). For example, a C++ library may bundle a testing framework. This is especially

common with catch2 where one often encounters a comical situation with only a few kilobytes

of library source code and over 600KB of catch2.hpp.

The extra size, while wasteful, is not the main issue, however. The bigger problem is that if a bug

is fixed in the bundled dependency, then to propagate the fix we will need to release a new

version (or revision) of each package that bundles it. Needless to say this is not scalable.

Revision 0.17, June 202478 The build2 Packaging Guide

3.5 Don’t bundle dependencies

https://cppget.org/catch2

While this doesn’t apply to testing frameworks, an even bigger issue with bundling of dependen­

cies in general is that two libraries that bundle the same dependency (potentially of different

versions) may not be able to coexist in the same build with the symptoms ranging from compile

errors to subtle runtime issues that are hard to diagnose.

As a result, it is strongly recommended that you unbundle any dependencies that upstream may

have bundled. In case of testing frameworks, see How do I handle tests that have extra dependen­

cies? for the recommended way to deal with such cases.

One special case where a bundled dependency may be warranted is a small utility that is

completely inline/private to the implementation and where making it an external dependency may

lead to a less performant result (due to the inability to inline without resorting to LTO). The

xxhash implementation in libzstd is a representative example of this situation.

3.6 Don’t build your main targets in the root buildfile

It may be tempting to have your main targets (libraries, executables) in the root buildfile,

especially if it allows you to symlink entire directories from upstream/ (which is not possible

if you have to have a buildfile inside). However, this is not recommended except for the

simplest of projects.

Firstly, this quickly gets messy since you have to combine managing README, LICENSE, etc.,

and subdirectories with your main target builds. More importantly, this also means that when

your main target is imported (and thus the buildfile that defines this target must be loaded),

your entire project will be loaded, including any tests/ and examples/ subprojects, and that

is wasteful.

If you want to continue symlinking entire directories from upstream/ but without moving

everything to the root buildfile, the recommended approach is to simply add another subdi­

rectory level. Let’s look at a few concrete example to illustrate the technique (see Decide on the

package source code layout for background on the terminology used).

Here is the directory structure of a package which uses a combined layout (no header/source split)

and where the library target is in the root buildfile:

libigl-core/
|-- igl/ -> ../upstream/igl/
|-- tests/
·-- buildfile # Defines lib{igl-core}.

And here is the alternative structure where we have added the extra libigl-core subdirectory

with its own buildfile:

79Revision 0.17, June 2024 The build2 Packaging Guide

3.6 Don’t build your main targets in the root buildfile

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

libigl-core/
|-- libigl-core/
|Â Â |-- igl/ -> ../../upstream/igl/
|Â Â ·-- buildfile # Defines lib{igl-core}.
|-- tests/
·-- buildfile

Below is the bdep-new invocation that can be used to automatically create this alternative struc­

ture (see Craft bdep new command line to create package for background and bdep-new(1)

for details):

$ bdep new \
 --type lib,prefix=libigl-core,subdir=igl,buildfile-in-prefix \
 libigl-core

Let’s also look at an example of the split layout, which may require a slightly different

bdep-new sub-options to achieve the same result. Here is the layout which matched upstream

exactly:

$ bdep new --type lib,split,subdir=foo,no-subdir-source libfoo
$ tree libfoo
libfoo/
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- ...
·-- src/
 |-- buildfile
 ·-- ...

However, with this layout we will not be able to symlink the entire include/foo/ and src/

subdirectories because there are buildfiles inside (and which may tempt you to just move

everything to the root buildfile). To fix this we can move the buildfiles out of source

subdirectory foo/ and into prefixes (include/ and src/) using the build­
file-in-prefix sub-option. And since src/ doesn’t have a source subdirectory, we have to

invent one:

$ bdep new --type lib,split,subdir=foo,buildfile-in-prefix libfoo
$ tree libfoo
libfoo/
|-- include/
|Â Â |-- foo/ -> ../../upstream/include/foo/
|Â Â ·-- buildfile
·-- src/
 |-- foo/ -> ../../upstream/src/
 ·-- buildfile

Revision 0.17, June 202480 The build2 Packaging Guide

3.6 Don’t build your main targets in the root buildfile

3.7 Don’t make extensive changes in a revision

Unlike a new version, a revision replaces the previous revision of the same version and as a result

must be strictly backwards-compatible in all aspects with what it replaces. If you make extensive

changes in a revision, it becomes difficult to guarantee that this requirement is satisfied. As a

result, you should refrain from making major changes, like substantially altering the build, in a

revision, instead delaying such changes until the next version.

4 Packaging HOWTO

This chapter provides advice on how to handle less common packaging tasks and requirements.

4.1 How do I patch upstream source code?

If you need to change something in the upstream source code, there are several options: You can

make a copy of the upstream source file and make the modifications there. While straightforward,

this approach has one major drawback: you will have to keep re-applying the changes for every

subsequent version unless and until upstream incorporates your changes. The other two options

try to work around this drawback.

The first alternative option is to modify the upstream source code automatically during the build,

typically using an ad hoc recipe. This approach works best when the changes are regular and can

be applied mechanically with something like the sed builtin.

The second alternative option is to use the C/C++ preprocessor to make the necessary changes to

the upstream source code during compilation. Unlike the first alternative, this approach doesn’t

have a prescribed way to apply it in every situation and often requires some imagination. Note

that it also has the tendency to quickly get out of hand, at which point it’s wise to keep it simple

and use the first option (manual modification).

The following sections examine each approach in detail.

4.1.1 Modifying upstream source code manually

As an illustration of this approach, let’s say we need to patch src/foo.cpp in our libfoo
example from the previous sections (see the Fill with upstream source code step for a refresher).

The recommended sequence of steps is as follows:

1. Rename the upstream symlink to .orig:

$ cd libfoo/src/
$ mv foo.cpp foo.cpp.orig

2. Make a deep copy of .orig:

81Revision 0.17, June 2024 The build2 Packaging Guide

4 Packaging HOWTO

$ cp -H foo.cpp.orig foo.cpp

3. Make any necessary modifications in the deep copy:

$ edit foo.cpp

4. Create a patch for the modifications:

$ diff -u foo.cpp.orig foo.cpp >foo.cpp.patch

The presence of the .orig and .patch files makes it clear that the upstream code was modi­

fied. They are also useful when re-applying the changes to the new version of the upstream

source code. The recommended sequence of steps for this task is as follows:

1. After the upstream submodule update (see the New version: update upstream submod­

ule step), the .orig symlink points to the new version of the upstream source file.

2. Overwrite old modified version with a deep copy of new .orig:

$ cp -H foo.cpp.orig foo.cpp

3. Apply old modifications to the new deep copy:

$ patch <foo.cpp.patch

If some hunks of the patch could not be applied, manually resolve any conflicts.

4. If in the previous step the patch did not apply cleanly, regenerate it:

$ diff -u foo.cpp.orig foo.cpp >foo.cpp.patch

4.1.2 Modifying upstream source code during build

As an illustration of this approach, let’s say upstream is using the ${VAR} style variable substi­

tutions in their config.h.cmake instead of the more traditional @VAR@ style:

/* config.h.cmake */

#define FOO_VERSION "${PROJECT_VERSION}"

The ${VAR} style is not supported by the build2 autoconf module which means we cannot

use the upstream config.h.cmake as is. While we could patch this file manually to use

@VAR@ instead, this is a pretty mechanical change that can be easily made with a simple ad hoc

recipe during the build, freeing us from manually applying the same changes in subsequent

versions. For example:

using autoconf

h{config}: in{config.h.in}
{

Revision 0.17, June 202482 The build2 Packaging Guide

4.1.2 Modifying upstream source code during build

https://github.com/build2/libbuild2-autoconf

 autoconf.flavor = cmake
 PROJECT_VERSION = $version
}

in{config.h.in}: file{config.h.cmake}
{{
 sed -e ’s/\$\{(.+)\}/@\1@/g’ $path($<) >$path($>)
}}

4.1.3 Modifying upstream source code with C/C++ preprocessor

A good illustration of this approach is adding the build2 metadata to an executable (see How

do I convey additional information (metadata) with executables and C/C++ libraries? for back­

ground). Let’s say we have a symlink to upstream’s main.c that implements the executable’s

main() function and we need to add a snipped of code at the beginning of this function that

handles the --build2-metadata option. While manually modifying main.c is not a wrong

approach, we can try to be clever and do it automatically with the preprocessor.

Specifically, we can create another file next to the main.c symlink, calling it, for example,

main-build2.c, with the following contents:

/* Handle --build2-metadata in main() (see also buildfile). */

#define main xmain
#include "main.c"
#undef main

#include <stdio.h>
#include <string.h>

int main (int argc, const char** argv)
{
 if (argc == 2 && strncmp (argv[1], "--build2-metadata=", 18) == 0)
 {
 printf ("# build2 buildfile foo\n");
 printf ("export.metadata = 1 foo\n");
 printf ("foo.name = [string] foo\n");
 ...
 return 0;
 }

 return xmain (argc, argv);
}

The idea here is to rename the original main() with the help of the C preprocessor and provide

our own main() which, after handling --build2-metadata calls the original. One notable

deal-breaker for this approach would be a C++ implementation of main() that doesn’t have the

explicit return. There is also a better chance in C++ for the main macro to replace something

unintended.

83Revision 0.17, June 2024 The build2 Packaging Guide

4.1.3 Modifying upstream source code with C/C++ preprocessor

https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md

To complete this we also need to modify our buildfile to exclude main.c from compilation

(since it is compiled as part of main-build2.c via the preprocessor inclusion). For example:

exe{foo}: {h c}{** -main}
exe{foo}: c{main}: include = adhoc # Included in main-build2.c.

4.2 How do I deal with bad header inclusion practice?

This section explains how to deal with libraries that include their public, generically-named

headers without the library name as a subdirectory prefix. Such libraries cannot coexist, neither in

the same build nor when installed.

Specifically, as an illustration of the problem, consider the libfoo library with a public header

named util.h that is included as <util.h> (instead of, say, <libfoo/util.h> or

<foo/util.h>). If this library’s headers are installed directly into, say, /usr/include,

then if two such libraries happened to be installed at the same time, then one will overwrite the

other’s header. There are also problems in the non-installed case: if two such libraries are used by

the same project, then which <util.h> header gets included depends on which library’s header

search path ends up being specified first on the command line (with the -I option).

These issues are severe enough that libraries with such inclusion issues cannot be published to

cppget.org without them being addressed in the build2 package. Thankfully, most library

authors these days use the library name as an inclusion prefix (or sometimes they have headers

that are decorated with the library name). However, libraries that do not follow these guidelines

do exist and this section describes how to change their inclusion scheme if you are attempting to

package one of them.

One notable consequence of changing the inclusion scheme is that it will no longer be possible to

use a system-installed version of the package (because it presumably still uses the unqualified

inclusion scheme). Note, however, that distributions like Debian and Fedora have the same

co-existence issue as we do and are generally strict about potential header clashes. In particular, it

is not uncommon to find Debian packages installing library headers into subdirectories of

/usr/include to avoid such clashes. And if you find this to be the case for the library you are

packaging, then it may make sense to use the same prefix as used by the main distributions for

compatibility.

It is also possible that distributions disregard these considerations for some libraries. This usually

happens for older, well-known libraries that happened to be installed this way in the early days

and changing things now will be too disruptive. In a sense, it is understood that such libraries

effectively "own" the unqualified header names that they happen to be using. If you think you are

packaging such a library, get in touch to discuss this further since it may make sense to also disre­

gard this rule in cppget.org.

Revision 0.17, June 202484 The build2 Packaging Guide

4.2 How do I deal with bad header inclusion practice?

https://cppget.org/
https://build2.org/community.xhtml#help
https://cppget.org/

As a concrete example of the approach, let’s continue with libfoo that has util.h and which

upstream expects the users to include as <util.h>. The is what the upstream source code

layout may look like:

libfoo/
|-- include/
|Â Â ·-- util.h
·-- src/
 ·-- ...

Our plan is to change the inclusion scheme in the build2 package from <util.h> to

<libfoo/util.h>. To this effect, we use a slightly modified layout for our package (see

Craft bdep new command line to create package on how to achieve it):

libfoo/
|-- include/
|Â Â ·-- libfoo/
|Â Â ·-- util.h -> ../../../upstream/include/util.h
·-- src/
 ·-- ... -> ../../upstream/src/...

The installation-related section in our header buildfile will look like this:

Install into the libfoo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/libfoo/
 install.subdirs = true
}

In the source buildfile we will most likely need to add the include/libfoo header

search path since the upstream source files continue to include public headers without the library

prefix (there should be no harm in that and it’s not worth modifying them):

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

Unqualified (without <libfoo/...>) header search paths.
#
out_pfx_inc_unq = [dir_path] $out_root/include/libfoo
src_pfx_inc_unq = [dir_path] $src_root/include/libfoo

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc" \
 "-I$out_pfx_inc_unq" "-I$src_pfx_inc_unq"

85Revision 0.17, June 2024 The build2 Packaging Guide

4.2 How do I deal with bad header inclusion practice?

It is also possible that public headers include each other as <util.h> rather than the more

common "util.h". If that’s the case, then we need to fix that and there are two ways to do it.

The first approach is to patch the public headers to include each other with the library prefix (that

is, <libfoo/util.h>, etc). See How do I patch upstream source code? for details.

The second approach is to support including public headers both ways, that is, as

<libfoo/util.h> and as <util.h>. This will not only solve the above problem (public

headers including each other), but also support any existing code that uses this library and most

likely includes its headers the old way, without the prefix.

There is, however, a major drawback to doing that: while the installation of the library can now

co-exist with other libraries (because we install its public headers into, say,

/usr/include/libfoo), it may still not be usable in combination with other libraries from

the same build (because we still add the unqualified header search path).

If you still want to provide this dual inclusion support, the way to achieve it is by exporting the

unqualified header search path and also adding it to the pkg-config files (see How do I handle

extra header installation subdirectory? for background on the latter). For example:

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc" \
 "-I$out_pfx_inc_unq" "-I$src_pfx_inc_unq"
 cxx.export.libs = $intf_libs
}

Make sure headers installed into, say, /usr/include/libfoo/
can also be included without the directory prefix for backwards
compatibility.
#
lib{foo}: cxx.pkgconfig.include = include/ include/libfoo/

4.3 How do I handle extra header installation subdirectory?

This section explains how to handle an additional header installation subdirectory. As an illustra­

tion of the problem, consider the libfoo example from the previous sections (see the Fill with

upstream source code step for a refresher). In that example the library headers are included as

<foo/util.hpp> and installed as, say, /usr/include/foo/util.hpp. In this scheme

the installed header inclusion works without requiring any extra steps from our side because the

compiler searches for header in /usr/include by default.

However, some libraries choose to install their headers into a subdirectory of, say,

/usr/include but without having this subdirectory as part of the inclusion path (foo/ in

<foo/util.hpp>). The two typical reasons for this are support for installing multiple versions

of the same library side-by-side (for example, /usr/include/foo-v1/foo/util.hpp) as

Revision 0.17, June 202486 The build2 Packaging Guide

4.3 How do I handle extra header installation subdirectory?

well as not using the library name as the inclusion subdirectory prefix and then having to hide the

headers in a subdirectory due to potential clashes with other headers (if installed directly into,

say, /usr/include; see How do I deal with bad header inclusion practice? for background).

In such cases the installed header inclusion does not work out of the box and we have to arrange

for an additional header search path to be added via pkg-config. Let’s use the versioned

library case to illustrate this technique. The relevant part from the header buildfile will look

like this:

Install into the foo-vN/foo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/"foo-v$version.major"/foo/
 install.subdirs = true
}

The part that we need to add, this time to the source buildfile, looks like this:

Make sure headers installed into, say, /usr/include/foo-vN/foo/
can be included as <foo/*.hpp> by overriding the header search
path in the generated pkg-config files.
#
lib{foo}: cxx.pkgconfig.include = include/"foo-v$version.major"/

The variable will be c.pkgconfig.include for a C library.

4.4 How do I handle headers without an extension?

If all the headers in a project have no extension, then you can simply specify the empty exten­
sion value for the hxx{} target type in build/root.build:

hxx{*}: extension =
cxx{*}: extension = cpp

Note, however, that using wildcard patterns for such headers in your buildfile is a bad idea

since such a wildcard will most likely pick up other files that also have no extension (such as

buildfile, executables on UNIX-like systems, etc). Instead, it’s best to spell the names of

such headers explicitly. For example, instead of:

lib{hello}: {hxx cxx}{*}

Write:

lib{hello}: cxx{*} hxx{hello}

87Revision 0.17, June 2024 The build2 Packaging Guide

4.4 How do I handle headers without an extension?

If only some headers in a project have no extension, then it’s best to specify the non-empty exten­

sion for the extension variable in build/root.build (so that you can still use wildcards

for headers with extensions) and spell out the headers with no extension explicitly. Continuing

with the above example, if we have both the hello.hpp and hello headers, then we can

handle them like this:

hxx{*}: extension = hpp
cxx{*}: extension = cpp

lib{hello}: {hxx cxx}{*} hxx{hello.}

Notice the trailing dot in hxx{hello.} – this is the explicit "no extension" specification. See

Targets and Target Types for details.

4.5 How do I expose extra debug macros of a library?

Sometimes libraries provide extra debugging facilities that are usually enabled or disabled with a

macro. For example, libfoo may provide the LIBFOO_DEBUG macro that enables additional

sanity checks, tracing, etc. Normally, such facilities are disabled by default.

While it may seem like a good idea to detect a debug build and enable this automatically, it is not:

such facilities usually impose substantial overheads and the presence of debug information does

not mean that performance is not important (people routinely make optimized builds with debug

information).

As a result, the recommended approach is to expose this as a configuration variable that the

consumers of the library can use (see Project Configuration for background). Continue with the

libfoo example, we can add config.libfoo.debug to its build/root.build:

build/root.build

config [bool] config.libfoo.debug ?= false

And then define the LIBFOO_DEBUG macro based on that in the buildfile:

src/buildfile

if $config.libfoo.debug
 cxx.poptions += -DLIBFOO_DEBUG

If the macro is also used in the library’s interface (for example, in inline or template functions),

then we will also need to export it (see Adjust source buildfile: build and export options for

details):

Revision 0.17, June 202488 The build2 Packaging Guide

4.5 How do I expose extra debug macros of a library?

src/buildfile

if $config.libfoo.debug
{
 cxx.poptions += -DLIBFOO_DEBUG
 lib{foo}: cxx.export.poptions += -DLIBFOO_DEBUG
}

If the debug facility in question should be enabled by default even in the optimized builds (in

which case the macro usually has the NO_DEBUG semantics), the other option is to hook it up to

the standard NDEBUG macro, for example, in the library’s configuration header file.

Note that such .debug configuration variables should primarily be meant for the user to selec­

tively enable extra debugging support in certain libraries of their build. However, if your project

depends on a number of libraries with such extra debugging support and it generally makes sense

to also enable this support in dependencies if it is enabled in your project, then you may want to

propagate your .debug configuration value to the dependencies (see the depends package

manifest value for details on dependency configuration). You, however, should still allow the

user to override this decision on the per-dependency basis.

Continuing with the above example, let’s say we have libbar with config.libbar.debug
that depends on libfoo and wishes by default to enable debugging in libfoo if it is enabled

in libbar. This is how we can correctly arrange for this in libbar’s manifest:

depends:
\
libfoo ^1.2.3
{
 # We prefer to enable debug in libfoo if enabled in libbar
 # but accept if it’s disabled (for example, by the user).
 #
 prefer
 {
 if $config.libbar.debug
 config.libfoo.debug = true
 }

 accept (true)
}
\

5 Packaging FAQ

5.1 Publishing FAQ

89Revision 0.17, June 2024 The build2 Packaging Guide

5 Packaging FAQ

5.1.1 Why is my package in alpha rather than stable?

If your package uses a semver version (or semver-like, that is, has three version components) and

the first component is zero (for example, 0.1.0), then, according to the semver specification,

this is an alpha version and bdep-publish(1) automatically published such a version to the

alpha section of the repository.

Sometimes, however, in a third-party package, while the version may look like semver, upstream

may not assign the zero first component any special meaning. In such cases you can override the

bdep-publish behavior with the --section option, for example:

$ bdep publish --section=stable

Note that you should only do this if you are satisfied that by having the zero first component

upstream does not imply alpha quality. Getting an explicit statement to this effect from upstream

is recommended.

5.1.2 Where to publish if package requires staged toolchain?

If your package requires the staged toolchain, for example, because it needs a feature or bugfix

that is not yet available in the released toolchain, then you won’t be able to publish it to

cppget.org. Specifically, if your package has the accurate build2 version constraint and

you attempt to publish it, you will get an error like this:

error: package archive is not valid
 info: unable to satisfy constraint (build2 >= 0.17.0-) for package foo
 info: available build2 version is 0.16.0

There are three alternative ways to proceed in this situation:

1. Wait until the next release and then publish the package to cppget.org.

2. If the requirement for the staged toolchain is "minor", that is, it doesn’t affect the common

functionality of the package or only affects a small subset of platforms/compilers, then you

can lower the toolchain version requirement and publish the package to cppget.org. For

example, if you require the staged toolchain because of a bugfix that only affects one plat­

form, it doesn’t make sense to delay publishing the package since it is perfectly usable on all

the other platforms in the meantime.

3. Publish it to queue.stage.build2.org, the staging package repository. This repository contain

new packages that require the staged toolchain to work and which will be automatically

moved to cppget.org once the staged version is released. The other advantage of

publishing to this repository (besides not having to remember to manually publish the

package once the staged version is released) is that your package becomes available from an

archive repository, which is substantially faster than a git repository.

Revision 0.17, June 202490 The build2 Packaging Guide

5.1.1 Why is my package in alpha rather than stable?

https://build2.org/community.xhtml#stage
https://queue.stage.build2.org/

To publish to this repository, use the following bdep-publish command line:

$ bdep publish --repository=https://stage.build2.org ...

5.1.3 Why "project owner authentication failed" while publishing?

If you are getting the following error while attempting to publish a new version of a package:

$ bdep publish
...
error: project owner authentication failed

Then this means the remote git repository you are using does not match the one from which you

(or someone else) has published the initial version of the package.

In build2 we use the ownership of the package git repository as a proxy for the ownership of

the package name on cppget.org. Specifically, when you publish the package for the first time, we

record the git URL for its package repository. And any further versions of this package can only

be submitted by someone who has write access to this repository. See bdep-publish(1) for

details.

Based on this background, the first step you need to take when getting the above owner authenti­

cation error is to understand its cause. For that, first use the git-config command to see the

URL you are using locally:

$ git config --get remote.origin.url

Then look in the git repositories that back cppget.org and queue.cppget.org and find the URL

that is recorded in the owners/ subdirectory in the corresponding package-owner.mani­
fest file.

Note that your local URL will normally be SSH while the recorded URL will always be HTTPS.

Provided that the host names match, the part to look in for differences is the path component. One

common cause of a mismatch is the missing .git extension. For example (local first, recorded

second):

git@github.com:build2-packaging/zstd
https://github.com/build2-packaging/zstd.git

In this case adding the missing extension to the local URL should fix the error.

If, however, the discrepancy is expected, for example, because you have renamed the package

repository or moved it to a new location, the ownership information will need to be updated

manually. In this case feel free to submit a pull request with the necessary changes or get in

touch.

91Revision 0.17, June 2024 The build2 Packaging Guide

5.1.3 Why "project owner authentication failed" while publishing?

https://cppget.org/
https://github.com/cppget/
https://cppget.org/
https://queue.cppget.org/
https://build2.org/community.xhtml#help
https://build2.org/community.xhtml#help

	Preface
	1 Introduction
	1.1 Terminology

	2 Common Guidelines
	2.1 Setup the package repository
	2.1.1 Check if package repository already exists
	2.1.2 Use upstream repository name as package repository name
	2.1.3 Create package repository in personal workspace
	2.1.4 Initialize package repository with bdep new
	2.1.5 Add upstream repository as git submodule

	2.2 Create package and generate buildfile templates
	2.2.1 Decide on the package name
	2.2.2 Decide on the package source code layout
	2.2.3 Craft bdep new command line to create package
	2.2.4 Review and test auto-generated buildfile templates
	2.2.5 Create final package
	2.2.6 Adjust package version

	2.3 Fill package with source code and add dependencies
	2.3.1 Initialize package in build configurations
	2.3.2 Add dependencies
	2.3.3 Fill with upstream source code

	2.4 Adjust project-wide and source buildfiles
	2.4.1 Adjust project-wide build system files in build/
	2.4.2 Adjust source subdirectory buildfiles
	2.4.3 Adjust header buildfile
	2.4.4 Adjust source buildfile: overview
	2.4.5 Adjust source buildfile: cleanup
	2.4.6 Adjust source buildfile: dependencies
	2.4.7 Adjust source buildfile: public headers
	2.4.8 Adjust source buildfile: sources, private headers
	2.4.9 Adjust source buildfile: build and export options
	2.4.10 Adjust source buildfile: symbol exporting
	2.4.11 Adjust source buildfile: shared library version
	2.4.12 Adjust source buildfile: executables
	2.4.13 Adjust source buildfile: extra requirements
	2.4.14 Test library build

	2.5 Make smoke test
	2.5.1 Adjust project-wide build system files in tests/build/
	2.5.2 Convert generated test to library smoke test
	2.5.3 Make smoke test: executables
	2.5.4 Test locally
	2.5.5 Test locally: installation
	2.5.6 Test locally: distribution
	2.5.7 Commit and test with CI

	2.6 Replace smoke test with upstream tests
	2.6.1 Understand how upstream tests work
	2.6.2 Convert smoke test to upstream tests
	2.6.3 Test locally
	2.6.4 Commit and test with CI

	2.7 Add upstream examples, benchmarks, if any
	2.8 Adjust root files (buildfile, manifest, etc)
	2.8.1 Adjust root buildfile
	2.8.2 Adjust root buildfile: other subdirectories
	2.8.3 Adjust root buildfile: commit and test
	2.8.4 Adjust manifest
	2.8.5 Adjust manifest: summary
	2.8.6 Adjust manifest: license
	2.8.7 Adjust manifest: commit and test
	2.8.8 Adjust PACKAGE-README.md

	2.9 Adjust package repository README.md
	2.10 Release and publish
	2.10.1 Transfer package repository
	2.10.2 Release final version
	2.10.3 Publish released version

	2.11 Package version management
	2.11.1 New revision
	2.11.2 New version
	2.11.3 New version: create new work branch
	2.11.4 New version: open new version
	2.11.5 New version: update upstream submodule
	2.11.6 New version: review upstream changes
	2.11.7 New version: layout changes
	2.11.8 New version: new/old dependencies
	2.11.9 New version: new/old source files
	2.11.10 New version: changes to build system
	2.11.11 New version: other new/old files/subdirectories
	2.11.12 New version: review manifest and PACKAGE-README.md
	2.11.13 New version: review repository README.md
	2.11.14 New version: review/fix accumulated issues
	2.11.15 New version: test locally and with CI
	2.11.16 New version: merge, release, and publish
	2.11.17 New version/revision in old release series

	3 What Not to Do
	3.1 Don't write buildfiles from scratch, use bdep-new
	3.2 Avoid fixing upstream issues in the build2 package
	3.3 Avoid changing upstream source code layout
	3.4 Don't make library header-only if it can be compiled
	3.5 Don't bundle dependencies
	3.6 Don't build your main targets in the root buildfile
	3.7 Don't make extensive changes in a revision

	4 Packaging HOWTO
	4.1 How do I patch upstream source code?
	4.1.1 Modifying upstream source code manually
	4.1.2 Modifying upstream source code during build
	4.1.3 Modifying upstream source code with C/C++ preprocessor

	4.2 How do I deal with bad header inclusion practice?
	4.3 How do I handle extra header installation subdirectory?
	4.4 How do I handle headers without an extension?
	4.5 How do I expose extra debug macros of a library?

	5 Packaging FAQ
	5.1 Publishing FAQ
	5.1.1 Why is my package in alpha rather than stable?
	5.1.2 Where to publish if package requires staged toolchain?
	5.1.3 Why "project owner authentication failed" while publishing?

