
The build2 Toolchain Introduction

Copyright © 2014-2016 Code Synthesis Ltd
Permission is granted to copy, distribute and/or modify this document under the terms of the MIT
License.

Revision 0.2 , January 2016
This revision of the document describes the build2 toolchain 0.2.x series.

TL;DR
$ bpkg create -d hello cxx
created new configuration in hello/

$ cd hello/
$ bpkg add https://build2.org/pkg/1/hello/stable
added repository build2.org/hello/stable

$ bpkg fetch
fetching build2.org/hello/stable
2 package(s) in 1 repository(s)

$ bpkg build hello
build libhello 1.0.0+1 (required by hello)
build hello 1.0.0
continue? [Y/n] y
libhello-1.0.0+1.tar.gz 100% of 1489 B 983 kBps 00m01s
fetched libhello 1.0.0+1
unpacked libhello 1.0.0+1
hello-1.0.0.tar.gz 100% of 1030 B 6882 kBps 00m01s
fetched hello 1.0.0
unpacked hello 1.0.0
configured libhello 1.0.0+1
configured hello 1.0.0
c++ hello-1.0.0/cxx{hello}
c++ libhello-1.0.0+1/hello/cxx{hello}
ld libhello-1.0.0+1/hello/libso{hello}
ld hello-1.0.0/exe{hello}
updated hello 1.0.0

Warning
The build2 toolchain 0.x.y series are alpha releases. Interfaces will change in back-
wards-incompatible ways, guaranteed. Currently, it is more of a technology preview rather than
anything final. But if you want to start playing with it, welcome and join the mailing list!

Our approach to developing build2 is to first get the hard parts right before focusing on
completeness. So while we might still be extracting header dependencies on every run (no
caching yet) they do play well with auto-generated source code. In other words, we go depth
rather than breadth-first. As a result, there are plenty of limitations and missing pieces, especially
in the build system. The most notable ones are:

Limited documentation.
No C compiler rules.
No support for Windows/VC++.
No support for parallel builds.
No support for custom build system rules/modules.

1Revision 0.2, January 2016 The build2 Toolchain Introduction

TL;DR

https://lists.build2.org/

Introduction
The build2 toolchain is a set of tools designed for building and packaging C++ code (though, if
it can handle C++ it can handle anything, right?). The toolchain currently includes the build
system (build2), the package manager (bpkg), and the repository web interface (brep). More
tools, such as the build robot (bbot), are in the works. Then there is cppget.org which we hope
will become the C++ package repository.

The goal of this document is to give you a basic idea of what the build2 toolchain can do so
that you can decide if you are interested and want to learn more. Further documentation is refer-
enced at the end of this introduction.

The build2 toolchain is self-hosted and self-packaged (and, yes, it is on cppget.org). It could
then serve as its own example. However, before the toolchain can unpack and build itself, we
have to bootstrap it (that chicken and egg problem again) and this step wouldn’t serve our goal of
quickly learning what build2 is about. So, instead, we will start with a customary "Hello,
World!" example which you won’t yet be able to try yourself (but don’t worry, complete terminal
output will be shown). If at the end you find build2 appealing, the following section jumps
right into bootstrapping and installation (and, yes, you get to run that coveted bpkg update
bpkg). Once the build2 installation is complete, you can come back to the "Hello, World!"
example and try all of the steps for yourself.

This introduction explores the consumer side of "Hello, World!". That is, we assume that
someone was kind enough to create and package the libhello library and the hello program
and we will learn how to obtain and build them as well as keep up with their updates. And so,
without further ado, let’s begin.

The first step in using bpkg is to create a configuration. A configuration is a directory where
packages that require similar compile settings will be built. You can create as many configura-
tions as you want: for different C++ compilers, debug/release, 32/64-bit, or even for different
days of the week, if you are so inclined. Say we are in the mood for a GCC 5 release build today:

$ mkdir hello-gcc5-release
$ cd hello-gcc5-release
$ bpkg create cxx config.cxx=g++-5 config.cxx.coptions=-O3
created new configuration in /tmp/hello-gcc5-release/

Let’s discuss that last command line: bpkg create is the command for creating a new config-
uration. As a side note, if you ever want to get help for any bpkg command, run bpkg help
<command>. To see a list of commands, run just bpkg help (or see bpkg(1)). While we are
at it, if you ever want to see what bpkg is running underneath, there is the -v option. And if you
really want to get under the hood, use --verbose <level> .

Revision 0.2, January 20162 The build2 Toolchain Introduction

Introduction

https://cppget.org/
https://cppget.org/

After the command we have cxx which is the name of the build2 build system module. As you
might have guessed, cxx provides support for the C++ compilation. By specifying this module
during the configuration creation we configure it (yes, with those config.cxx... variables
that follow) for the entire configuration. That is, every package that we will build in this configu-
ration and that uses the cxx module will inherit these settings.

The rest of the command line are the configuration variables for the cxx module with
coptions standing for compile options (there are also poptions for preprocess options,
loptions for link options, and libs for extra libraries to link).

Ok, configuration in hand, where can we get some packages? bpkg packages come from reposi-
tories. A repository can be a local filesystem directory or a remote URL. Our example packages
come from their own remote "Hello, World!" repository:
https://build2.org/pkg/1/hello/stable/ (go ahead, browse it, I will wait).

Instead of scouring repository manifests by hand (I know you couldn’t resist), we can ask bpkg
to interrogate a repository location for us:

$ bpkg rep-info https://build2.org/pkg/1/hello/stable
build2.org/hello/stable https://build2.org/pkg/1/hello/stable
hello 1.0.0
libhello 1.0.0+1

Or we could use the repository’s web interface (implemented by brep). Our repository has one,
check it out: https://build2.org/pkg/hello/ .

Ok, back to the command line. If we want to use a repository as a source of packages in our
configuration, we have to first add it:

$ bpkg add https://build2.org/pkg/1/hello/stable
added repository build2.org/hello/stable

If we want to add several repositories, we just execute the brep add command for each of
them. Once this is done, we fetch the list of available packages for all the added repositories:

$ bpkg fetch
fetching build2.org/hello/stable
2 package(s) in 1 repository(s)

You would normally re-run the bpkg fetch command after you’ve added another repository
or to refresh the list of available packages.

Now that bpkg knows where to get packages, we can finally get down to business:

$ bpkg build hello
build libhello 1.0.0+1 (required by hello)
build hello 1.0.0
continue? [Y/n]

3Revision 0.2, January 2016 The build2 Toolchain Introduction

Introduction

https://build2.org/pkg/1/hello/stable/
https://build2.org/pkg/hello/

Let’s see what’s going on here. We ran bpkg build to build the hello program which
happens to depend on the libhello library. So bpkg presents us with a plan of action, that is,
the steps it will have to perform in order to build us hello and then asks us to confirm that’s
what we want to do (you can add --yes|-y to skip the confirmation). Let’s answer yes and see
what happens:

...
continue? [Y/n] y
libhello-1.0.0+1.tar.gz 100% of 1489 B 1364 kBps 00m01s
fetched libhello 1.0.0+1
unpacked libhello 1.0.0+1
hello-1.0.0.tar.gz 100% of 1030 B 20 MBps 00m01s
fetched hello 1.0.0
unpacked hello 1.0.0
configured libhello 1.0.0+1
configured hello 1.0.0
c++ hello-1.0.0/cxx{hello}
c++ libhello-1.0.0+1/hello/cxx{hello}
ld libhello-1.0.0+1/hello/libso{hello}
ld hello-1.0.0/exe{hello}
updated hello 1.0.0

While the output is mostly self-explanatory, in short, bpkg downloaded, unpacked, and config-
ured both packages and then proceeded to building the hello executable which happens to
require building of the libhello library. Note that the download progress may look differently
on your machine depending on which fetch tool (wget , curl , or fetch) is used. If you ever
considered giving that -v option a try, now would be a good time. But let’s first drop (bpkg
drop) the hello package so that we get the same build from scratch:

$ bpkg drop hello
following prerequisite packages were automatically built and will no longer be necessary:
 libhello
drop prerequisite packages? [Y/n] y
drop hello
drop libhello
continue? [Y/n] y
disfigured hello
disfigured libhello
purged hello
purged libhello

Ok, ready for some -v details? Feel free to skip the following listing if not interested.

$ bpkg build -v -y hello
fetching libhello-1.0.0+1.tar.gz from build2.org/hello/stable
curl ... https://build2.org/pkg/1/hello/stable/libhello-1.0.0+1.tar.gz
 % Total % Received Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1489 100 1489 1121 0 0:00:01 0:00:01 --:--:-- 1122
fetched libhello 1.0.0+1
tar -xf libhello-1.0.0+1.tar.gz
unpacked libhello 1.0.0+1
fetching hello-1.0.0.tar.gz from build2.org/hello/stable
curl ... https://build2.org/pkg/1/hello/stable/hello-1.0.0.tar.gz
 % Total % Received Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

Revision 0.2, January 20164 The build2 Toolchain Introduction

Introduction

100 1030 100 1030 773 0 0:00:01 0:00:01 --:--:-- 772
fetched hello 1.0.0
tar -xf hello-1.0.0.tar.gz
unpacked hello 1.0.0
b -v configure(./libhello-1.0.0+1/)
config::save libhello-1.0.0+1/build/config.build
configured libhello 1.0.0+1
b -v configure(./hello-1.0.0/)
config::save hello-1.0.0/build/config.build
configured hello 1.0.0
hold package hello
b -v update(./hello-1.0.0/)
g++-5 -Ilibhello-1.0.0+1 -O3 -std=c++11 -o hello-1.0.0/hello.o -c hello-1.0.0/hello.cxx
g++-5 -Ilibhello-1.0.0+1 -O3 -std=c++11 -fPIC -o libhello-1.0.0+1/hello/hello-so.o -c libhello-1.0.0+1/hello/hello.cxx
g++-5 -O3 -std=c++11 -shared -o libhello-1.0.0+1/hello/libhello.so
g++-5 -O3 -std=c++11 -o hello-1.0.0/hello hello-1.0.0/hello.o libhello-1.0.0+1/hello/libhello.so
updated hello 1.0.0

Another handy command is bpkg status . It can be used to examine the state of a package in
the configuration. Here are a few examples (if you absolutely must know what hold_package
means, check the command’s documentation):

$ bpkg status libhello
configured 1.0.0+1

$ bpkg status hello
configured 1.0.0 hold_package

$ bpkg drop -y hello
disfigured hello
disfigured libhello
purged hello
purged libhello

$ bpkg status hello
available 1.0.0

$ bpkg status libfoobar
unknown

Let’s say we got wind of a new development: the libhello author released a new version of
the library. It is such an advance in the state of the "Hello, World!" art, it’s only currently avail-
able from testing . Of course, we must check it out.

Now, what exactly is testing ? You must have noticed that the repository location that we’ve
been using so far ended with /stable . Quite often it is useful to split our repository into
sub-repositories or sections. For example, to reflect the maturity of packages (say, stable and
testing , as in our case) or to divide them into sub-categories (misc and math) or even some
combination (math/testing). Note, however, that to bpkg these sub-repositories or sections
are just normal repositories and there is nothing special about them.

We are impatient to try the new version so we will skip interrogating the repository with
rep-info and just add it to our configuration. After all, we can always check with status if
any upgrades are available for packages we are interested in. Here we assume the configuration
has hello built (run bpkg build -y hello to get to that state).

5Revision 0.2, January 2016 The build2 Toolchain Introduction

Introduction

$ bpkg add https://build2.org/pkg/1/hello/testing
added repository build2.org/hello/testing

$ bpkg fetch
fetching build2.org/hello/stable
fetching build2.org/hello/testing
5 package(s) in 2 repository(s)

$ bpkg status libhello
configured 1.0.0+1; available 1.1.0

Ok, libhello 1.1.0 is now available. How do we upgrade? We can try to build hello
again:

$ bpkg build -y hello
info: dir{hello-1.0.0/} is up to date
updated hello 1.0.0

Nothing happens. That’s because bpkg will only upgrade (or downgrade) to a new version if we
explicitly ask it to. As it is now, all dependencies for hello are satisfied and bpkg is happy to
twiddle its thumbs. Let’s tell bpkg to build us libhello instead:

$ bpkg build libhello
build libformat 1.0.0 (required by libhello)
build libprint 1.0.0 (required by libhello)
upgrade libhello 1.1.0
reconfigure hello (required by libhello)
continue? [Y/n]

Ok, now we are getting somewhere. It looks like the new version of libhello went really
enterprise-grade (or is it called web-scale these days?). There are now two new dependencies
(libformat and libprint) that we will have to build in order to upgrade. Maybe we should
answer no here?

Notice also that reconfigure hello line. If you think about this, it makes sense: we are
getting a new version of libhello and hello depends on it so it might need a chance to make
some adjustments to its configuration.

Let’s answer yes if only to see what happens:

...
continue? [Y/n] y
disfigured hello 1.0.0
disfigured libhello 1.0.0+1
libformat-1.0.0.tar.gz 100% of 1064 B 11 MBps 00m01s
fetched libformat 1.0.0
unpacked libformat 1.0.0
libprint-1.0.0.tar.gz 100% of 1040 B 9 MBps 00m01s
fetched libprint 1.0.0
unpacked libprint 1.0.0
libhello-1.1.0.tar.gz 100% of 1564 B 4672 kBps 00m01s
fetched libhello 1.1.0

Revision 0.2, January 20166 The build2 Toolchain Introduction

Introduction

unpacked libhello 1.1.0
configured libformat 1.0.0
configured libprint 1.0.0
configured libhello 1.1.0
configured hello 1.0.0
c++ libhello-1.1.0/hello/cxx{hello}
c++ libformat-1.0.0/format/cxx{format}
ld libformat-1.0.0/format/liba{format}
c++ libprint-1.0.0/print/cxx{print}
ld libprint-1.0.0/print/liba{print}
ld libhello-1.1.0/hello/liba{hello}
c++ libhello-1.1.0/hello/cxx{hello}
c++ libformat-1.0.0/format/cxx{format}
ld libformat-1.0.0/format/libso{format}
c++ libprint-1.0.0/print/cxx{print}
ld libprint-1.0.0/print/libso{print}
ld libhello-1.1.0/hello/libso{hello}
c++ libhello-1.1.0/tests/test/cxx{driver}
ld libhello-1.1.0/tests/test/exe{driver}
updated libhello 1.1.0

If you paid really close attention, you might have noticed something surprising: the hello
package wasn’t updated. Yes, it was reconfigured, but we didn’t see any compile or link
commands for this project. In fact, hello is now pretty out-of-date.

While it may sound surprising, bpkg doesn’t try to keep your packages up-to-date. Configured –
yes, but not up-to-date. Trying to guarantee up-to-date-ness of packages is in the end futile. For
example, if you upgrade your compiler or system headers, bpkg has no way of realizing that
some packages are now out-of-date. Only the build system, which has the complete information
about all the dependencies, can make such a realization (and correct it).

But it is easy to make sure a package is up-to-date at any given time with the bpkg update
command (there is also bpkg clean), for example:

$ bpkg update hello
c++ hello-1.0.0/cxx{hello.cxx}
ld hello-1.0.0/exe{hello}
updated hello 1.0.0

Let’s say we really don’t like the direction libhello is going and would rather stick to version
1.0.0 . Just like upgrades, downgrades are explicit plus, in this case, we need to specify the
version (you can also specify desired version for upgrades, in case you are wondering).

$ bpkg build libhello/1.0.0 hello
downgrade libhello 1.0.0+1
reconfigure/build hello 1.0.0
continue? [Y/n] y
disfigured hello 1.0.0
disfigured libhello 1.1.0
libhello-1.0.0+1.tar.gz 100% of 1489 B 983 kBps 00m01s
fetched libhello 1.0.0+1
unpacked libhello 1.0.0+1

7Revision 0.2, January 2016 The build2 Toolchain Introduction

Introduction

configured libhello 1.0.0+1
configured hello 1.0.0
c++ libhello-1.0.0+1/hello/cxx{hello}
ld libhello-1.0.0+1/hello/liba{hello}
c++ libhello-1.0.0+1/hello/cxx{hello}
ld libhello-1.0.0+1/hello/libso{hello}
c++ libhello-1.0.0+1/tests/test/cxx{driver}
ld libhello-1.0.0+1/tests/test/exe{driver}
updated libhello 1.0.0+1
c++ hello-1.0.0/cxx{hello}
ld hello-1.0.0/exe{hello}
updated hello 1.0.0

Notice how this time we updated hello as part of the libhello downgrade – yes, you can do
that. Perhaps there should be an option to automatically update all the dependents?

Ok, so all this might look nice and all, but we haven’t actually seen anything of what we’ve
presumably built (it can all be a charade, for all we know). Can we see some libraries and run the
hello program?

There are several ways we can do this. If the package provides tests (as all good packages
should), we can run them with the bpkg test command:

$ bpkg test libhello hello
test libhello-1.0.0+1/tests/test/exe{driver}
test hello-1.0.0/exe{hello}
tested libhello 1.0.0+1
tested hello 1.0.0

But that doesn’t quite count for seeing libraries and running programs. Well, if you insist, let’s
see what’s inside hello-gcc5-release/ . The bpkg configuration (this
hello-gcc5-release/ directory) is, in the build2 build system terms, an amalgamation –
a project that contains subprojects. Not surprisingly, the subprojects in this amalgamation are the
packages that we’ve built:

$ ls -1F
build/
hello-1.0.0/
libhello-1.0.0+1/
bpkg.sqlite3
buildfile
hello-1.0.0.tar.gz
libhello-1.0.0+1.tar.gz

And if we look inside hello-1.0.0/ we will see what looks like the hello program:

$ ls -1F hello-1.0.0/
build/
buildfile
hello*
hello.cxx
hello.o

Revision 0.2, January 20168 The build2 Toolchain Introduction

Introduction

manifest
test.out
version

$ hello-1.0.0/hello
usage: hello <name>...

$ hello-1.0.0/hello World
Hello, World!

The important point here is this: the bpkg configuration is not some black box that you should
never look inside. On the contrary, it is a normal building block of the build system and if you
understand what you are doing, feel free to muck around. Now, confess, did you run sqlite3
bpkg.sqlite3 .dump ?

Another way to get hold of a package’s goodies is to install it with bpkg install . Let’s try
that:

$ bpkg install config.install.root=/opt/hello \
config.install.root.sudo=sudo hello
install /opt/hello/
install /opt/hello/include/hello/
install libhello-1.0.0+1/hello/hxx{hello}
install /opt/hello/lib/
install libhello-1.0.0+1/hello/libso{hello}
install /opt/hello/bin/
install hello-1.0.0/exe{hello}
install /opt/hello/share/doc/hello/
install hello-1.0.0/doc{version}
installed hello 1.0.0

$ tree -F /opt/hello/
/opt/hello/
âââ bin/
â âââ hello*
âââ include/
â âââ hello/
â âââ hello
âââ lib/
â âââ libhello.so*
âââ share/
 âââ doc/
 âââ hello/
 âââ version

$ /opt/hello/bin/hello World
Hello, World!

The config.install.root.sudo value is the optional sudo-like program that should be
used to run the install program. For those feeling queasy running sudo make install ,
here is your answer. If you are wondering whether you could have specified those
config.install.* values during the configuration creation, the answer is yes, indeed!

9Revision 0.2, January 2016 The build2 Toolchain Introduction

Introduction

What if we wanted to use libhello in our own project? While the installed version is always
an option, it may not be convenient when we develop our code. We may have multiple builds per
project, for example, with GCC and Clang to catch all the warnings. We may also want to make
sure our application works well with various versions of libhello (and maybe even with that
heinous 1.1.0). While we can install different configurations into different directories, it’s hard
to deny things are getting a bit hairy: multiple configurations, multiple installations... I guess we
will have to get our hands into that cookie jar, I mean, configuration, again.

In fact, let’s just start writing our own version of the hello program and see how it goes:

$ mkdir hello2
$ cd hello2

$ cat >hello.cpp

#include <hello/hello>

int main ()
{
 hello::say ("World");
}

What build system will we use? I can’t believe you are even asking this question!

$ mkdir build

$ cat >build/bootstrap.build

project = hello2 # project name
using config # config module (those config.*)

$ cat >build/root.build

using cxx # c++ module
cxx{*}: extension = cpp # c++ source file extension
cxx.std = 11 # c++ standard

$ cat >buildfile

import libs = libhello%lib{hello}
exe{hello}: cxx{hello} $libs

While some of this might not be crystal clear (like why do we have bootstrap.build and
root.build), I am sure you at least have a fuzzy idea of what’s going on. And that’s enough
for what we are after here. Completely explaining what’s going on here and, more importantly,
why it’s going this way is for another time and place (the build2 build system manual).

To recap, these are the contents of our project so far:

Revision 0.2, January 201610 The build2 Toolchain Introduction

Introduction

$ tree -F
.
âââ build/
âÂ Â âââ bootstrap.build
âÂ Â âââ root.build
âââ buildfile
âââ hello.cpp

Let’s try to build it and see what happens – maybe it will magically work (b(1) is the build2
build system driver).

$ b
test g++
error: unable to import target libhello%lib{hello}
 info: consider explicitly specifying its project out_root via the config.import.libhello command line variable
info: while applying rule cxx.compile to update obja{hello}
info: while applying rule cxx.link to update exe{hello}
info: while applying rule alias to update dir{./}

No magic but we got a hint: looks like we need to tell build2 where libhello using
config.import.libhello . Without fretting too much about what exactly out_root
means, let’s point build2 to our bpkg configuration and see what happens. After all, that’s
where, more or less, our out for libhello is.

$ b config.import.libhello=/tmp/hello-gcc5-release
test g++
c++ cxx{hello}
ld exe{hello}

Almost magic. Let’s see what we’ve got:

$ tree -F
.
âââ build/
âÂ Â âââ bootstrap.build
âÂ Â âââ root.build
âââ buildfile
âââ hello*
âââ hello.cpp
âââ hello.o

$./hello
Hello, World!

Let’s change something in our source code and try to update:

$ touch hello.cpp

$ b
test g++
error: unable to import target libhello%lib{hello}
 info: consider explicitly specifying its project out_root via the config.import.libhello command line variable
info: while applying rule cxx.compile to update obja{hello}
info: while applying rule cxx.link to update exe{hello}
info: while applying rule alias to update dir{./}

11Revision 0.2, January 2016 The build2 Toolchain Introduction

Introduction

Looks like we have to keep repeating that config.import.libhello and who wants that?
Also, the test g++ line is getting annoying. To get rid of both we have to make our configura-
tion permanent. Also, seeing that we plan to have several of them (GCC/Clang, different version
of libhello), it makes sense to create them out of source tree. Let’s get to it:

$ cd ..
$ mkdir hello2-gcc5-release
$ ls -1F
hello2/
hello2-gcc5-release/

$ b config.cxx=g++-5 config.cxx.coptions=-O3 \
config.import.libhello=/tmp/hello-gcc5-release \
’configure(hello2/@hello2-gcc5-release/)’
test g++-5
mkdir hello2-gcc5-release/build/
mkdir hello2-gcc5-release/build/bootstrap/
save hello2-gcc5-release/build/bootstrap/src-root.build
save hello2-gcc5-release/build/config.build

Translated, configure(hello2/@hello2-gcc5-release/) means "configure the
hello2/ source directory in the hello2-gcc5-release/ output directory". In build2
this source directory is called src_root and output directory – out_root . Hm, we’ve already
heard out_root mentioned somewhere before...

Once the configuration is saved, we can develop our project without any annoyance:

$ b hello2-gcc5-release/
c++ hello2/cxx{hello}
ld hello2-gcc5-release/exe{hello}

$ cd hello2-gcc5-release/

$ b
info: dir{./} is up to date

$ b clean
rm exe{hello}
rm obja{hello}

$ b -v
g++-5 -I/tmp/hello-gcc5-release/libhello-1.0.0+1 -O3 -std=c++11 -o hello.o -c ../hello2/hello.cpp
g++-5 -O3 -std=c++11 -o hello hello.o /tmp/hello-gcc5-release/libhello-1.0.0+1/hello/libhello.so

Some of you might have noticed that hello2-gcc5-release/ and
/tmp/hello-gcc5-release/ look awfully similar and are now wondering if we could
instead build hello2 inside /tmp/hello-gcc5-release/ ? I am glad you’ve asked. In
fact, we can just do:

$ cd ..
$ ls -1F
hello2/
hello2-gcc5-release/

Revision 0.2, January 201612 The build2 Toolchain Introduction

Introduction

$ b ’configure(hello2/@/tmp/hello-gcc5-release/hello2/)’
mkdir -p /tmp/hello-gcc5-release/hello2/
mkdir /tmp/hello-gcc5-release/hello2/build/
mkdir /tmp/hello-gcc5-release/hello2/build/bootstrap/
save /tmp/hello-gcc5-release/hello2/build/bootstrap/src-root.build
save /tmp/hello-gcc5-release/hello2/build/config.build

$ b /tmp/hello-gcc5-release/hello2/
c++ hello2/cxx{hello}
ld /tmp/hello-gcc5-release/hello2/exe{hello}

Now that might seem like magic, but it’s actually pretty logical. Why don’t we need to specify
any of the config.cxx values this time? Because they are inherited from the set specified for
/tmp/hello-gcc5-release when we created this configuration with bpkg create .
What about config.import.libhello , don’t we need at least that? Not really –
libhello will be found automatically since it is part of the same amalgamation as we now are.

Of course, bpkg has no idea hello2 is now part of its configuration:

$ bpkg status -d /tmp/hello-gcc5-release/ hello2
unknown

This is what I meant when I said you can muck around in bpkg ’s back yard as long as you
understand the implications.

But is there a way to make bpkg aware of our little project? You seem to really have all the right
questions today. Actually, there is a very good reason why we would want that: if we upgrade
libhello we would want bpkg to automatically reconfigure our project. As it is now, we will
have to remember and do it ourselves.

The only way to make bpkg aware of hello2 is to turn it from merely a build2 project into a
bpkg package. While the topic of packaging is also for another time and place (the build2
package manager manual), we can get away with something as simple as this:

$ cat >hello2/manifest
: 1
name: hello2
version: 1.0.0
summary: Improved "Hello World" program
license: proprietary
url: http://example.org/hello2
email: hello2@example.org
depends: libhello >= 1.0.0

For our purposes, the only really important value in this manifest is depends since it tells bpkg
which package(s) we need. Let’s give it a try. But first we will clean up our previous attempt at
building hello2 inside /tmp/hello-gcc5-release/ :

13Revision 0.2, January 2016 The build2 Toolchain Introduction

Introduction

$ b ’{clean disfigure}(/tmp/hello-gcc5-release/hello2/)’
rm /tmp/hello-gcc5-release/hello2/exe{hello}
rm /tmp/hello-gcc5-release/hello2/obja{hello}
rm /tmp/hello-gcc5-release/hello2/build/config.build
rm /tmp/hello-gcc5-release/hello2/build/bootstrap/src-root.build
rmdir /tmp/hello-gcc5-release/hello2/build/bootstrap/
rmdir /tmp/hello-gcc5-release/hello2/build/
rmdir /tmp/hello-gcc5-release/hello2/

Next, we use the bpkg build command but instead of giving it a package name like we did
before, we will point it to our hello2 package directory:

$ bpkg build -d /tmp/hello-gcc5-release/ ./hello2/
build hello2 1.0.0
continue? [Y/n] y
unpacked hello2 1.0.0
configured hello2 1.0.0
c++ hello2/cxx{hello}
ld /tmp/hello-gcc5-release/hello2-1.0.0/exe{hello}
updated hello2 1.0.0

Let’s upgrade libhello and see what happens:

$ bpkg build -d /tmp/hello-gcc5-release/ libhello
upgrade libhello 1.1.0
reconfigure hello2 (required by libhello)
continue? [Y/n] y
disfigured hello2 1.0.0
disfigured libhello 1.0.0+1
unpacked libhello 1.1.0
configured libhello 1.1.0
configured hello2 1.0.0
mkdir fsdir{/tmp/hello-gcc5-release/libhello-1.1.0/hello/}
c++ libhello/hello/cxx{hello}
ld /tmp/hello-gcc5-release/libhello-1.1.0/hello/liba{hello}
c++ libhello/hello/cxx{hello}
ld /tmp/hello-gcc5-release/libhello-1.1.0/hello/libso{hello}
updated libhello 1.1.0

As promised, hello2 got reconfigured. We can now update it and give it a try:

$ bpkg update -d /tmp/hello-gcc5-release/ hello2
c++ hello2/cxx{hello}
ld /tmp/hello-gcc5-release/hello2-1.0.0/exe{hello}
updated hello2 1.0.0

$ /tmp/hello-gcc5-release/hello2-1.0.0/hello
Hello, World!

To finish off, let’s see how hard it will be to get a Clang build going:

Revision 0.2, January 201614 The build2 Toolchain Introduction

Introduction

$ cd /tmp
$ mkdir hello-clang36-release
$ cd hello-clang36-release

$ bpkg create cxx config.cxx=clang++-3.6 config.cxx.coptions=-O3
created new configuration in /tmp/hello-clang36-release/

$ bpkg add https://build2.org/pkg/1/hello/testing
added repository build2.org/hello/testing

$ bpkg fetch
fetching build2.org/hello/testing
fetching build2.org/hello/stable (complements build2.org/hello/testing)
5 package(s) in 2 repository(s)

$ bpkg build libhello/1.0.0 .../hello2/
build libhello 1.0.0+1
build hello2 1.0.0
continue? [Y/n] y
libhello-1.0.0+1.tar.gz 100% of 1489 B 983 kBps 00m01s
fetched libhello 1.0.0+1
unpacked libhello 1.0.0+1
unpacked hello2 1.0.0
configured libhello 1.0.0+1
configured hello2 1.0.0
c++ libhello-1.0.0+1/hello/cxx{hello}
ld libhello-1.0.0+1/hello/liba{hello}
c++ libhello-1.0.0+1/hello/cxx{hello}
ld libhello-1.0.0+1/hello/libso{hello}
c++ libhello-1.0.0+1/tests/test/cxx{driver}
ld libhello-1.0.0+1/tests/test/exe{driver}
updated libhello 1.0.0+1
c++ ~/work/build2/hello/hello2/cxx{hello}
ld hello2-1.0.0/exe{hello}
updated hello2 1.0.0

Are you still here? Ok, one last example. This one is for STL (for those missing the connection,
Stephan T. Lavavej, said, and I am paraphrasing, that he will never build a shared library and will
never use a build system/package manager more complex than a single makefile; got to respect
the man’s convictions).

The Warning section above said there is no Windows support yet. But nobody said anything
about cross-compilers:

$ mkdir hello-mingw32
$ cd hello-mingw32

$ bpkg create cxx \
config.cxx=x86_64-w64-mingw32-g++ \
config.bin.ar=x86_64-w64-mingw32-ar \
config.bin.lib=static config.cxx.loptions=-static
created new configuration in /tmp/hello-mingw32/

$ bpkg add https://build2.org/pkg/1/hello/stable
added repository build2.org/hello/stable

15Revision 0.2, January 2016 The build2 Toolchain Introduction

Introduction

$ bpkg fetch
fetching build2.org/hello/stable
2 package(s) in 1 repository(s)

$ bpkg build -y hello
bpkg build -y hello
libhello-1.0.0+1.tar.gz 100% of 1489 B 983 kBps 00m01s
fetched libhello 1.0.0+1
unpacked libhello 1.0.0+1
hello-1.0.0.tar.gz 100% of 1030 B 6882 kBps 00m01s
fetched hello 1.0.0
unpacked hello 1.0.0
configured libhello 1.0.0+1
configured hello 1.0.0
c++ hello-1.0.0/cxx{hello}
c++ libhello-1.0.0+1/hello/cxx{hello}
ld libhello-1.0.0+1/hello/libso{hello}
ld hello-1.0.0/exe{hello}
updated hello 1.0.0

$ wine hello-1.0.0/hello.exe Windows
Hello, Windows!

Installation
The build2 toolchain requires a C++11 compiler with limited C++14 support. GCC 4.8 or later
and Clang 3.4 or later are known to work. If you only need the build2 build system without the
bpkg package manager, then the C++ compiler is all you will need. If, however, you would also
like to build bpkg , then you will first need to obtain SQLite as well as the libodb and
libodb-sqlite libraries.

In this guide we install everything that we build into /usr/local . If you would like to use a
different installation location, you will need to make adjustments to the commands below.

Note on /usr/local : most distributions these days "cripple" this location by either not search-
ing /usr/local/include for headers during compilation (so we add the -I option) or not
searching /usr/local/lib for libraries either during linking (so we add the -L option) or at
runtime (which we fix with the help of -rpath). If you know that your installation doesn’t
suffer from (some of) these issues, then you can adjust the commands below accordingly. Note
that even if /usr/local/lib is searched in at runtime, you may still have to run ldcon-
fig(1) (as root) after the installation to refresh the library cache.

Note to Mac OS users: you will need version 10.5 (Leopard) or later. We will also be using the
system C++ toolchain that comes with the Xcode Command Line Tools. To verify it is installed,
run:

Revision 0.2, January 201616 The build2 Toolchain Introduction

Installation

$ g++ --version

To install Command Line Tools, run:

$ xcode-select --install

1. Installing SQLite
Skip this step if you are only interested in the build2 build system.

To install SQLite, use your distribution’s package manager and make sure you install both
the libraries (most likely already installed) and the development files.

For Debian/Ubuntu:

$ sudo apt-get install libsqlite3-dev

For RedHat/Fedora:

$ sudo yum install sqlite-devel

For FreeBSD:

pkg install sqlite3

For Mac OS:

You should already have a system-default version installed. To verify:

$ ls /usr/include/sqlite3.h /usr/lib/libsqlite3.dylib

To see which version you have, run:

$ grep ’#define SQLITE_VERSION’ /usr/include/sqlite3.h

Any recent version (i.e., greater than 3.5.0) should work. If for some reason you don’t seem
to have SQLite, download the source code then build and install it into /usr/local .

2. Installing libodb and libodb-sqlite
Again, skip this step if you are only interested in the build2 build system.

[Currently we use pre-release versions of these libraries so they have to be built from
source.]

Download source packages for the two libraries from the same location as
build2-toolchain . Then unpack, build, and install:

17Revision 0.2, January 2016 The build2 Toolchain Introduction

Installation

https://download.build2.org/

$ cd lib*-X.Y.Z

$./configure --prefix=/usr/local \
CPPFLAGS=-I/usr/local/include \
LDFLAGS=-L/usr/local/lib

$ make
$ sudo make install

See the INSTALL file for each library for more information.

3. Bootstrapping build2
Download build2-toolchain then unpack and bootstrap the build2 build system:

$ cd build2-toolchain-X.Y.Z
$ cd build2/
$./bootstrap
$./build2/b-boot config.bin.rpath=/usr/local/lib update

For more information on this step (for example, how to specify the C++ compiler, options,
etc.), refer to the INSTALL file in the build2/ subdirectory of build2-toolchain .

4. Configuring, Building, and Installing the Rest of the Toolchain

$ cd .. # back to build2-toolchain-X.Y.Z

$./build2/build2/b \
config.cxx.poptions=-I/usr/local/include \
config.cxx.loptions=-L/usr/local/lib \
config.bin.rpath=/usr/local/lib \
config.install.root=/usr/local \
config.install.root.sudo=sudo \
configure

$./build2/build2/b update
$./build2/build2/b install

To test the installation, run:

$ which b
/usr/local/bin/b
$ b --version

$ which bpkg
/usr/local/bin/bpkg
$ bpkg --version

5. Setting up updates with the package manager
If you only need to build this specific version of the toolchain, then you are done and can
skip this step. However, if you are planning to upgrade to future versions, then going every
time through the bootstrap steps will be tedious. Instead, we can use the bpkg package
manager to manage upgrades automatically. Note also that without periodic upgrades your

Revision 0.2, January 201618 The build2 Toolchain Introduction

Installation

https://download.build2.org/

version of the toolchain may become too old to be able to upgrade itself. In this case you
will have to fall back onto the bootstrap process.

First, choose a directory where you would like bpkg to build everything, for example,
build2-toolchain . Then:

$ cd # back to home directory
$ mkdir build2-toolchain
$ cd build2-toolchain

$ bpkg create \
cxx \
config.cxx.poptions=-I/usr/local/include \
config.cxx.loptions=-L/usr/local/lib \
config.bin.rpath=/usr/local/lib \
config.install.root=/usr/local \
config.install.root.sudo=sudo

$ bpkg add https://pkg.cppget.org/1/alpha
$ bpkg fetch
$ bpkg build build2 bpkg
$ bpkg install build2 bpkg

Later, to upgrade to a new version of the toolchain, simply do:

$ bpkg fetch
$ bpkg status build2 bpkg # See if any upgrades are available.
$ bpkg build build2 bpkg
$ bpkg install build2 bpkg

19Revision 0.2, January 2016 The build2 Toolchain Introduction

Installation

	TL;DR
	Warning
	Introduction
	Installation

