
The build2 Toolchain Introduction

Copyright © 2014-2016 Code Synthesis Ltd
Permission is granted to copy, distribute and/or modify this document under the terms of the
MIT License.

Revision 0.4 , September 2016
This revision of the document describes the build2 toolchain 0.4.x series.

Table of Contents
.................. 11 TL;DR
.................. 12 Warning
................. 13 Introduction

iRevision 0.4, September 2016 The build2 Toolchain Introduction

Table of Contents

1 TL;DR
$ bpkg create -d hello cc
created new configuration in hello/

$ cd hello/
$ bpkg add https://build2.org/pkg/1/hello/stable
added repository build2.org/hello/stable

$ bpkg fetch
fetching build2.org/hello/stable
2 package(s) in 1 repository(s)

$ bpkg build hello
 build libhello/1.0.0 (required by hello)
 build hello/1.0.0
continue? [Y/n] y
libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s
fetched libhello/1.0.0
unpacked libhello/1.0.0
hello-1.0.0.tar.gz 100% of 1057 B 6882 kBps 00m01s
fetched hello/1.0.0
unpacked hello/1.0.0
configured libhello/1.0.0
configured hello/1.0.0
c++ hello-1.0.0/cxx{hello}
c++ libhello-1.0.0/hello/cxx{hello}
ld libhello-1.0.0/hello/libs{hello}
ld hello-1.0.0/exe{hello}
updated hello/1.0.0

2 Warning
The build2 toolchain 0.X.Y series are alpha releases. Interfaces will change in back-
wards-incompatible ways, guaranteed. Currently, it is more of a technology preview rather
than anything final. But if you want to start playing with it, welcome and join the mailing list!

Our approach to developing build2 is to first get the hard parts right before focusing on
completeness. So while we might still only be building serially, we do handle auto-generated
source code (and, in particular, headers) properly. In other words, we go depth rather than
breadth-first. As a result, there are plenty of limitations and missing pieces, especially in the
build system. The most notable ones are:

Very limited documentation.
No support for parallel builds.
No support for custom build system rules/modules.

3 Introduction
The build2 toolchain is a set of tools designed for building and packaging C and C++ code
(though, if it can handle C++, it can handle anything, right?). The toolchain currently includes
the build system (build2), the package manager (bpkg), and the repository web interface

1Revision 0.4, September 2016 The build2 Toolchain Introduction

1 TL;DR

https://lists.build2.org/

(brep). More tools, such as the build robot (bbot), are in the works. Then there is
cppget.org (running brep) which we hope will become the C++ package repository.

The goal of this document is to give you a basic idea of what the build2 toolchain can do so
that you can decide if you are interested and want to learn more. Further documentation is
referenced at the end of this introduction.

The build2 toolchain is self-hosted and self-packaged (and, yes, it is on cppget.org). It
could have served as its own example, however, before the toolchain can build itself, we have
to bootstrap it (that chicken and egg problem again). And this step wouldn’t serve our goal of
quickly learning what build2 is about. So, instead, we will start with a customary "Hello,
World!" example which you won’t yet be able to try yourself (but don’t worry, complete
terminal output will be shown). If at the end you find build2 appealing, you can jump right
to The build2 Toolchain Installation and Upgrade (and, yes, there you get to run that
coveted bpkg build bpkg). Once the build2 installation is complete, you can come
back to the "Hello, World!" example and try all of the steps for yourself.

This introduction explores the consumer side of "Hello, World!". That is, we assume that
someone was kind enough to create and package the libhello library as well as the hello
program and we will learn how to obtain and build them as well as keep up with their updates.
At the end we will also see how to write our own, hello2 , program that depends on
libhello . And so, without further ado, let’s begin.

The first step in using bpkg is to create a configuration. A configuration is a directory where
packages that require similar compile settings will be built. You can create as many configu-
rations as you want: for different C++ compilers, targets (build2 is big on cross-compiling),
debug/release, 32/64-bit, or even for different days of the week, if you are so inclined. Say we
are in the mood for a GCC 5 release build today:

$ mkdir hello-gcc5-release
$ cd hello-gcc5-release
$ bpkg create cxx config.cxx=g++-5 config.cxx.coptions=-O3
created new configuration in /tmp/hello-gcc5-release/

Or perhaps you are on Windows and prefer Visual Studio (running from the Visual Studio
Tools Command Prompt):

> mkdir hello-vc14-release
> cd hello-vc14-release
> bpkg create cxx config.cxx=cl config.cxx.coptions=/O2
created new configuration in C:\projects\hello-vc14-release\

One of the primary goals of the build2 toolchain is to provide a uniform build interface
across all the platforms and compilers. While the following examples use the
hello-gcc5-release configuration and assume a UNIX-like operation system, every-
thing will work if you use hello-vc14-release (or hello-mingw-release) on
Windows. Just use appropriate paths, compilers, and options.

Revision 0.4, September 20162 The build2 Toolchain Introduction

3 Introduction

https://cppget.org/
https://cppget.org/

Let’s discuss that last command line: bpkg create is the command for creating a new
configuration. As a side note, if you ever want to get help for any bpkg command, run bpkg
help <command>. To see the list of commands, run just bpkg help (or see bpkg(1)).
While we are at it, if you ever want to see what bpkg is running underneath, there is the -v
(essential commands) and -V (all commands) options. And if you really want to get under the
hood, use --verbose <level> .

After the command we have cxx which is the name of the build2 build system module. As
you might have guessed, cxx provides support for the C++ compilation. By specifying this
module when creating the configuration we configure it (yes, with those config.cxx.*
variables that follow) for the entire configuration. That is, every package that we will build in
this configuration and that uses the cxx module will by default inherit these settings.

The rest of the command line are the configuration variables for the cxx module with
coptions standing for compile options (there are also poptions for preprocess options,
loptions for link options, and libs for extra libraries to link).

There is also the c module for the C compilation. So if we were planning to build both C and
C++ projects, then we could have run:

$ bpkg create c cxx ...

The problem, of course, is that you may not know what mix of languages those projects (or
their dependencies) might use. For example, the use of C might be an implementation detail
of a C++ library. To solve this, build2 provides another module called cc which stands for
C-common. So, in this context, instead of using the c and cxx modules directly, it’s a good
idea to get into the habit of using cc :

$ bpkg create cc config.cxx=g++-5 config.cc.coptions=-O3

Notice two things about this command line: we don’t need to specify the C compiler with
config.c – build2 is smart enough to figure it out from config.cxx (or vice versa).
We also used config.cc.coptions instead of config.cxx.coptions so that the
options apply to all the C-common languages (we can still use config.{c,cxx}.* for the
language-specific options).

Ok, configuration in hand, where can we get some packages? bpkg packages come from
repositories. A repository can be a local filesystem directory or a remote URL. Our example
packages come from their own remote "Hello, World!" repository:
https://build2.org/pkg/1/hello/stable/ (go ahead, browse it, I will wait).

Instead of scouring repository manifests by hand (I know you couldn’t resist), we can ask
bpkg to interrogate a repository location for us:

$ bpkg rep-info https://build2.org/pkg/1/hello/stable
warning: authenticity of the certificate for repository build2.org/hello/stable cannot be established
certificate is for build2.org, "Code Synthesis" <admin@build2.org>
certificate SHA256 fingerprint:
FF:DF:7D:38:67:4E:C3:82:[...]:30:56:B9:77:B9:F2:01:94
trust this certificate? [y/N]

3Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

https://build2.org/pkg/1/hello/stable/

The bpkg repositories are normally signed to prevent tampering with packages. If the reposi-
tory certificate is seen (in this configuration) for the first time, bpkg will ask you to authenti-
cate it. A good way to authenticate a certificate is to compare the displayed fingerprint to the
one you have received earlier, for example, in an email announcement. The repository’s about
page also lists the fingerprint (see the about page for our repository). For more details on
repository signing see the bpkg-repository-signing(1) help topic.

If we answer yes, we will see the basic repository information (its canonical name, location,
certificate subject and fingerprint) followed by the list of available packages:

build2.org/hello/stable https://build2.org/pkg/1/hello/stable
CN=build2.org/O=Code Synthesis/admin@build2.org
FF:DF:7D:38:67:4E:C3:82:[...]:30:56:B9:77:B9:F2:01:94

hello/1.0.0
libhello/1.0.0

We can also use the repository’s web interface (implemented by brep). Our repository has
one, check it out: https://build2.org/pkg/hello/ .

Ok, back to the command line. If we want to use a repository as a source of packages in our
configuration, we have to first add it:

$ bpkg add https://build2.org/pkg/1/hello/stable
added repository build2.org/hello/stable

If we want to add several repositories, we just execute the bpkg add command for each of
them. Once this is done, we fetch the list of available packages for all the added repositories:

$ bpkg fetch
fetching build2.org/hello/stable
2 package(s) in 1 repository(s)

Note that you would normally re-run the bpkg fetch command after you’ve added another
repository or to refresh the list of available packages.

Now that bpkg knows where to get the packages, we can finally get down to business:

$ bpkg build hello
 build libhello/1.0.0 (required by hello)
 build hello/1.0.0
continue? [Y/n]

Let’s see what’s going on here. We ran bpkg build to build the hello program which
happens to depend on the libhello library. So bpkg presents us with a plan of action, that
is, the steps it will have to perform in order to build us hello and then asks us to confirm if
that’s what we want to do (you can add --yes|-y to skip the confirmation). In the
real-world usage the plan will be more complex, with upgrades/downgrades, reconfigurations,
etc.

Revision 0.4, September 20164 The build2 Toolchain Introduction

3 Introduction

https://build2.org/pkg/hello/?about
https://build2.org/pkg/hello/

Let’s answer yes and see what happens:

libhello-1.0.0.tar.gz 100% of 2428 B 1364 kBps 00m01s
fetched libhello/1.0.0
unpacked libhello/1.0.0
hello-1.0.0.tar.gz 100% of 1057 B 20 MBps 00m01s
fetched hello/1.0.0
unpacked hello/1.0.0
configured libhello/1.0.0
configured hello/1.0.0
c++ hello-1.0.0/cxx{hello}
c++ libhello-1.0.0/hello/cxx{hello}
ld libhello-1.0.0/hello/libs{hello}
ld hello-1.0.0/exe{hello}
updated hello/1.0.0

While the output is mostly self-explanatory, in short, bpkg downloaded, unpacked, and
configured both packages and then proceeded to building the hello executable which
happens to require building the libhello library. Note that the download progress may
look differently on your machine depending on which fetch tool (wget , curl , or fetch) is
used. If you ever considered giving that -v option a try, now would be a good time. But let’s
first drop (bpkg drop) the hello package so that we get the same build from scratch:

$ bpkg drop hello
following prerequisite packages were automatically built and will no longer be necessary:
 libhello
drop prerequisite packages? [Y/n] y
 drop hello
 drop libhello
continue? [Y/n] y
disfigured hello
disfigured libhello
purged hello
purged libhello

Ok, ready for some -v details? Feel free to skip the following listing if you are not interested.

$ bpkg build -v -y hello
fetching libhello-1.0.0.tar.gz from build2.org/hello/stable
curl ... https://build2.org/pkg/1/hello/stable/libhello-1.0.0.tar.gz
 % Total % Received Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 2428 100 2428 1121 0 0:00:01 0:00:01 --:--:-- 1122
fetched libhello/1.0.0
tar -xf libhello-1.0.0.tar.gz
unpacked libhello/1.0.0
fetching hello-1.0.0.tar.gz from build2.org/hello/stable
curl ... https://build2.org/pkg/1/hello/stable/hello-1.0.0.tar.gz
 % Total % Received Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1057 100 1057 773 0 0:00:01 0:00:01 --:--:-- 772
fetched hello/1.0.0
tar -xf hello-1.0.0.tar.gz
unpacked hello/1.0.0
b -v configure(./libhello-1.0.0/)
cat >libhello-1.0.0/build/config.build
configured libhello/1.0.0
b -v configure(./hello-1.0.0/)
cat >hello-1.0.0/build/config.build
configured hello/1.0.0
hold package hello
b -v update(./hello-1.0.0/)
g++-5 -I libhello-1.0.0 -O3 -std=c++11 -o hello-1.0.0/hello.o -c hello-1.0.0/hello.cxx
g++-5 -I libhello-1.0.0 -O3 -std=c++11 -fPIC -o libhello-1.0.0/hello/hello.so.o -c libhello-1.0.0/hello/hello.cxx
g++-5 -O3 -std=c++11 -shared -o libhello-1.0.0/hello/libhello-1.0.so libhello-1.0.0/hello/hello.so.o
g++-5 -O3 -std=c++11 -o hello-1.0.0/hello hello-1.0.0/hello.o libhello-1.0.0/hello/libhello-1.0.so
updated hello/1.0.0

5Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

Another handy command is bpkg status . It can be used to examine the state of a package
in the configuration. Here are a few examples (if you absolutely must know what
hold_package and sys:? mean, check bpkg-pkg-status(1)):

$ bpkg status libhello
configured 1.0.0; available sys:?

$ bpkg status hello
configured 1.0.0 hold_package; available sys:?

$ bpkg drop -y hello
disfigured hello
disfigured libhello
purged hello
purged libhello

$ bpkg status hello
available 1.0.0 sys:?

$ bpkg status libfoobar
unknown

Let’s say we got wind of a new development: the libhello author released a new version
of the library. It is such an advance in the art of "Hello, World!", it’s only currently available
from testing . Of course, we must check it out.

Now, what exactly is testing ? You must have noticed that the repository location that
we’ve been using so far ended with /stable . Quite often it is useful to split our repository
into sub-repositories or sections. For example, to reflect the maturity of packages (say,
stable and testing , as in our case) or to divide them into sub-categories (misc and
math) or even some combination (math/testing). Note, however, that to bpkg these
sub-repositories or sections are just normal repositories and there is nothing special about
them.

We are impatient to try the new version so we will skip interrogating the repository with
rep-info and just add it to our configuration. After all, we can always check with status
if any upgrades are available for packages we are interested in. Here we assume the configura-
tion has hello built (run bpkg build -y hello to get to that state).

$ bpkg add https://build2.org/pkg/1/hello/testing
added repository build2.org/hello/testing

$ bpkg fetch
fetching build2.org/hello/stable
fetching build2.org/hello/testing
5 package(s) in 2 repository(s)

Notice that this time we don’t see any authentication-related messages or prompts since bpkg
remembered (in this configuration) that we trust the certificate (testing naturally uses the
same one as stable).

Revision 0.4, September 20166 The build2 Toolchain Introduction

3 Introduction

Let’s see what’s new:

$ bpkg status libhello
configured 1.0.0; available 1.1.0 sys:?

Ok, libhello/1.1.0 is now available. How do we upgrade? We can try to build hello
again:

$ bpkg build -y hello
info: dir{hello-1.0.0/} is up to date
updated hello/1.0.0

Why did nothing happenned? Because bpkg will only upgrade (or downgrade) to a new
version if we explicitly ask it to. As things stand, all dependencies for hello are satisfied
and bpkg is happy to twiddle its thumbs. Let’s tell bpkg to build us libhello instead:

$ bpkg build libhello
 build libformat/1.0.0 (required by libhello)
 build libprint/1.0.0 (required by libhello)
 upgrade libhello/1.1.0
 reconfigure hello (dependent of libhello)
continue? [Y/n]

Ok, now we are getting somewhere. It looks like the new version of libhello went really
enterprise-grade (or is it called web-scale these days?). There are now two new dependencies
(libformat and libprint) that we will have to build in order to upgrade. Maybe we
should answer no here?

Notice also that reconfigure hello line. If you think about this, it makes sense: we are
getting a new version of libhello and hello depends on it so it might need a chance to
make some adjustments to its configuration.

Let’s answer yes if only to see what happens:

update dependent packages? [Y/n]

Another question. This one has to do with that reconfigure hello line we just talked
about. If you were wondering why we were only offered to reconfigure and not actually
update the dependent package, you should know that bpkg is a very lazy package manager, it
only does what it must do, not what might be nice to do. It must reconfigure but it doesn’t
really have to update. And this could be a good thing if, for example, you have a hundred
dependents in your configuration but right now you only want to build just those specific
packages. However, quite often, you do want to keep all the packages in your configuration
up to date and bpkg graciously offers to take care of this task. Ok, let’s answer yes again:

...
update dependent packages? [Y/n] y
disfigured hello/1.0.0
disfigured libhello/1.0.0
libformat-1.0.0.tar.gz 100% of 1064 B 11 MBps 00m01s
fetched libformat/1.0.0
unpacked libformat/1.0.0
libprint-1.0.0.tar.gz 100% of 1040 B 9 MBps 00m01s

7Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

fetched libprint/1.0.0
unpacked libprint/1.0.0
libhello-1.1.0.tar.gz 100% of 1564 B 4672 kBps 00m01s
fetched libhello/1.1.0
unpacked libhello/1.1.0
configured libformat/1.0.0
configured libprint/1.0.0
configured libhello/1.1.0
configured hello/1.0.0
c++ libhello-1.1.0/hello/cxx{hello}
c++ libformat-1.0.0/format/cxx{format}
ld libformat-1.0.0/format/liba{format}
c++ libprint-1.0.0/print/cxx{print}
ld libprint-1.0.0/print/liba{print}
ld libhello-1.1.0/hello/liba{hello}
c++ libhello-1.1.0/hello/cxx{hello}
c++ libformat-1.0.0/format/cxx{format}
ld libformat-1.0.0/format/libs{format}
c++ libprint-1.0.0/print/cxx{print}
ld libprint-1.0.0/print/libs{print}
ld libhello-1.1.0/hello/libs{hello}
c++ libhello-1.1.0/tests/test/cxx{driver}
ld libhello-1.1.0/tests/test/exe{driver}
c++ hello-1.0.0/cxx{hello}
ld hello-1.0.0/exe{hello}
updated libhello/1.1.0
updated hello/1.0.0

A lot of output but nothing really new. If you were to answer no to the "update dependent
packages?" question above, it is easy to make sure a package is up-to-date at a later time with
the bpkg update command (there is also bpkg clean), for example:

$ bpkg clean hello
rm hello-1.0.0/exe{hello}
rm hello-1.0.0/obje{hello}
cleaned hello/1.0.0

$ bpkg update hello
c++ hello-1.0.0/cxx{hello.cxx}
ld hello-1.0.0/exe{hello}
updated hello/1.0.0

Let’s say we really don’t like the direction libhello is going and would rather stick to
version 1.0.0 . Just like upgrades, downgrades are explicit plus, in this case, we need to
specify the version (you can also specify the desired version for upgrades).

$ bpkg build libhello/1.0.0
 downgrade libhello/1.0.0
 reconfigure hello (dependent of libhello)
continue? [Y/n] y
update dependent packages? [Y/n] y
disfigured hello/1.0.0
disfigured libhello/1.1.0
libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s
fetched libhello/1.0.0
unpacked libhello/1.0.0
configured libhello/1.0.0
configured hello/1.0.0
following prerequisite packages were automatically built and will no longer be necessary:
 libprint

Revision 0.4, September 20168 The build2 Toolchain Introduction

3 Introduction

 libformat
drop prerequisite packages? [Y/n] y
disfigured libprint
disfigured libformat
purged libprint
purged libformat
c++ libhello-1.0.0/hello/cxx{hello}
ld libhello-1.0.0/hello/liba{hello}
c++ libhello-1.0.0/hello/cxx{hello}
ld libhello-1.0.0/hello/libs{hello}
c++ libhello-1.0.0/tests/test/cxx{driver}
ld libhello-1.0.0/tests/test/exe{driver}
c++ hello-1.0.0/cxx{hello}
ld hello-1.0.0/exe{hello}
updated libhello/1.0.0
updated hello/1.0.0

Notice how bpkg helpfully offered to get rid of libprint and libformat which we
won’t be needing anymore. Note also that while we can use --yes|y as an answer to all the
numerous prompts, there are also more granular options. For example, this is how we can
instruct bpkg to drop prerequisites (--drop-prerequisite|-D) but leave dependents
just reconfigured (--leave-dependent|-L):

$ bpkg build -D -L libhello/1.0.0

Ok, so all this might look nice and all, but we haven’t actually seen anything of what we’ve
presumably built; it can all be a charade, for all we know. Can we see some libraries and run
the hello program?

There are several ways we can do this. If the package provides tests (as all good packages
should), we can run them with the bpkg test command:

$ bpkg test libhello hello
test libhello-1.0.0/tests/test/exe{driver}
test hello-1.0.0/exe{hello}
tested libhello/1.0.0
tested hello/1.0.0

But that doesn’t quite count for seeing libraries and running programs. Well, if you insist, let’s
see what’s inside hello-gcc5-release/ . The bpkg configuration (this
hello-gcc5-release/ directory) is, in the build2 build system terms, an amalgama-
tion – a project that contains subprojects. Not surprisingly, the subprojects in this amalgama-
tion are the packages that we’ve built:

$ ls -1F
build/
hello-1.0.0/
libhello-1.0.0/
buildfile
hello-1.0.0.tar.gz
libhello-1.0.0.tar.gz

And if we look inside hello-1.0.0/ we will see what looks like the hello program:

9Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

$ ls -1F hello-1.0.0/
build/
buildfile
hello*
hello.d
hello.cxx
hello.o
hello.o.d
manifest
test.out
version

$ hello-1.0.0/hello
usage: hello <name>...

$ hello-1.0.0/hello World
Hello, World!

The important point here is this: the bpkg configuration is not some black box that you
should never look inside of. On the contrary, it is a normal and predictable concept of the
build system and as long as you understand what you are doing, feel free to muck around.

Another way to get hold of a package’s goodies is to install it with bpkg install . Let’s
try that:

$ bpkg install \
 config.install.root=/opt/hello \
 config.install.sudo=sudo \
 hello

install /opt/hello/
install /opt/hello/include/
install /opt/hello/include/hello/
install libhello-1.0.0/hello/hxx{hello}
install libhello-1.0.0/hello/hxx{export}
install /opt/hello/lib/
install libhello-1.0.0/hello/libs{hello}
install /opt/hello/bin/
install hello-1.0.0/exe{hello}
install /opt/hello/share/
install /opt/hello/share/doc/
install /opt/hello/share/doc/hello/
install hello-1.0.0/doc{version}
installed hello/1.0.0

The config.install.sudo value is the optional sudo-like program that should be used
to run the install program. For those feeling queasy running sudo make install ,
here is your answer. If you are wondering whether you could have specified those
config.install.* values during the configuration creation, the answer is yes, indeed!

Let’s see what we’ve got:

$ tree -F /opt/hello/
/opt/hello/
âââ bin/
â âââ hello*
âââ include/
â âââ hello/

Revision 0.4, September 201610 The build2 Toolchain Introduction

3 Introduction

â âââ export
â âââ hello
âââ lib/
â âââ libhello-1.0.so*
â âââ libhello.so -> libhello-1.0.so*
âââ share/
 âââ doc/
 âââ hello/
 âââ version

We can also try to run the installed program:

$ /opt/hello/bin/hello World
/opt/hello/bin/hello: error while loading shared libraries: libhello-1.0.so: cannot open shared object file: No such file or directory

Not what we hoped to see. Note to the Windows users: this will actually work since
hello-1.0.dll will be installed into bin\ , next to the executable; for once things are
working better on Windows.

The problem is with our installation location: the runtime linker won’t look for
libhello-1.0.so in /opt/hello/lib unless we somehow tell it to (for example,
using LD_LIBRARY_PATH or equivalent). There are several ways we can resolve this. We
could give up on shared libraries and link our prerequisite libraries statically
(config.bin.exe.lib=static). Or we could use the rpath mechanism:

$ bpkg install \
 config.install.root=/opt/hello \
 config.install.sudo=sudo \
 config.bin.rpath=/opt/hello/lib \
 hello

ld hello-1.0.0/exe{hello}
install /opt/hello/
install /opt/hello/include/
install /opt/hello/include/hello/
install libhello-1.0.0/hello/hxx{hello}
install libhello-1.0.0/hello/hxx{export}
install /opt/hello/lib/
install libhello-1.0.0/hello/libs{hello}
install /opt/hello/bin/
install hello-1.0.0/exe{hello}
install /opt/hello/share/
install /opt/hello/share/doc/
install /opt/hello/share/doc/hello/
install hello-1.0.0/doc{version}
installed hello/1.0.0

$ /opt/hello/bin/hello World
Hello, World!

Notice that ld line above – this is where our executable is re-linked with the -rpath option.

We can also uninstall what we have installed with bpkg uninstall :

11Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

$ bpkg uninstall \
 config.install.root=/opt/hello \
 config.install.sudo=sudo
 hello

uninstall hello-1.0.0/doc{version}
uninstall /opt/hello/share/doc/hello/
uninstall /opt/hello/share/doc/
uninstall /opt/hello/share/
uninstall hello-1.0.0/exe{hello}
uninstall /opt/hello/bin/
uninstall libhello-1.0.0/hello/libs{hello}
uninstall /opt/hello/lib/
uninstall libhello-1.0.0/hello/hxx{export}
uninstall libhello-1.0.0/hello/hxx{hello}
uninstall /opt/hello/include/hello/
uninstall /opt/hello/include/
uninstall /opt/hello/
uninstalled hello/1.0.0

$ ls /opt/hello
ls: cannot access /opt/hello: No such file or directory

What if we wanted to use libhello in our own project? While installing it is always an
option, this may not be convenient when we develop our code. We may have multiple builds
per project, for example, with GCC and Clang to catch all the warnings. We may also want to
make sure our application works well with several versions of libhello (and maybe even
with that heinous 1.1.X). While we can install different configurations into different directo-
ries, it’s hard to deny things are getting a bit hairy: multiple configurations, multiple installa-
tions... I guess we will have to get our hands into that cookie jar, I mean, configuration, again.

In fact, let’s just start writing our own version of the hello program and see how it goes:

$ mkdir hello2
$ cd hello2

$ cat >hello.cpp

#include <hello/hello>

int main ()
{
 hello::say ("World");
}

What build system shall we use? I can’t believe you are even asking this question...

$ mkdir build

$ cat >build/bootstrap.build

project = hello2 # project name
using config # config module (those config.*)

$ cat >build/root.build

cxx.std = 11 # C++ standard
using cxx # C++ module

Revision 0.4, September 201612 The build2 Toolchain Introduction

3 Introduction

cxx{*}: extension = cpp # C++ source file extension

$ cat >buildfile

import libs = libhello%lib{hello}
exe{hello}: cxx{hello} $libs

While some of this might not be crystal clear (like why do we have bootstrap.build
and root.build), I am sure you at least have a fuzzy idea of what’s going on. And that’s
enough for what we are after here. Completely explaining what’s going on here and, more
importantly, why it’s going this way is for another time and place (the build2 build system
manual).

To recap, these are the contents of our project so far:

$ tree -F
.
âââ build/
â âââ bootstrap.build
â âââ root.build
âââ buildfile
âââ hello.cpp

Let’s try to build it and see what happens – maybe it will magically work (b(1) is the
build2 build system driver).

$ b config.cxx=g++-5
error: unable to import target libhello%lib{hello}
 info: consider explicitly specifying its project out_root via the config.import.libhello command line variable
info: while applying rule cxx.compile to update obje{hello}
info: while applying rule cxx.link to update exe{hello}
info: while applying rule alias to update dir{./}

No magic, unfortunately (or fortunately). But we got a hint: looks like we need to tell
build2 where libhello is using config.import.libhello . Without fretting too
much about what exactly out_root means, let’s point build2 to our bpkg configuration
and see what happens. After all, that’s where, more or less, our out-put for libhello is.

$ b config.cxx=g++-5 \
 config.import.libhello=/tmp/hello-gcc5-release
c++ cxx{hello}
ld exe{hello}

Almost magic. Let’s see what we’ve got:

$ tree -F
.
âââ build/
â âââ bootstrap.build
â âââ root.build
âââ buildfile
âââ hello*
âââ hello.d
âââ hello.cpp
âââ hello.o

13Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

âââ hello.o.d

$./hello
Hello, World!

Let’s change something in our source code and try to update:

$ touch hello.cpp

$ b
error: unable to import target libhello%lib{hello}
 info: consider explicitly specifying its project out_root via the config.import.libhello command line variable
info: while applying rule cxx.compile to update obje{hello}
info: while applying rule cxx.link to update exe{hello}
info: while applying rule alias to update dir{./}

Looks like we have to keep repeating those config.* values and who wants that? To get rid
of this annoyance we have to make our configuration permanent. Also, seeing that we plan to
have several of them (GCC/Clang, different version of libhello), it makes sense to create
them out of source tree. Let’s get to it:

$ cd ..
$ mkdir hello2-gcc5-release
$ ls -1F
hello2/
hello2-gcc5-release/

$ b config.cxx=g++-5 \
 config.cc.coptions=-O3 \
 config.import.libhello=/tmp/hello-gcc5-release \
 ’configure(hello2/@hello2-gcc5-release/)’

mkdir -p hello2-gcc5-release/build/
save hello2-gcc5-release/build/config.build

Translated, configure(hello2/@hello2-gcc5-release/) means "configure the
hello2/ source directory in the hello2-gcc5-release/ output directory". In
build2 this source directory is called src_root and output directory – out_root . Hm,
we’ve already heard out_root mentioned somewhere before...

Once the configuration is saved, we can develop our project without any annoyance:

$ b hello2-gcc5-release/
c++ hello2/cxx{hello}
ld hello2-gcc5-release/exe{hello}

$ cd hello2-gcc5-release/

$ b
info: dir{./} is up to date

$ b clean
rm exe{hello}
rm obje{hello}

$ b -v
g++-5 -I/tmp/hello-gcc5-release/libhello-1.0.0 -O3 -std=c++11 -o hello.o -c ../hello2/hello.cpp
g++-5 -O3 -std=c++11 -o hello hello.o /tmp/hello-gcc5-release/libhello-1.0.0/hello/libhello-1.0.so

Revision 0.4, September 201614 The build2 Toolchain Introduction

3 Introduction

Some of you might have noticed that hello2-gcc5-release/ and
/tmp/hello-gcc5-release/ look awfully similar and are now wondering if we could
instead build hello2 inside /tmp/hello-gcc5-release/ ? I am glad you’ve asked. In
fact, we can just do:

$ cd ..
$ ls -1F
hello2/
hello2-gcc5-release/

$ b ’configure(hello2/@/tmp/hello-gcc5-release/hello2/)’
mkdir -p /tmp/hello-gcc5-release/hello2/build/
save /tmp/hello-gcc5-release/hello2/build/config.build

$ b /tmp/hello-gcc5-release/hello2/
c++ hello2/cxx{hello}@/tmp/hello-gcc5-release/hello2/
ld /tmp/hello-gcc5-release/hello2/exe{hello}

Now that might seem like magic, but it’s actually pretty logical. Why don’t we need to specify
any of the config.c* values this time? Because they are inherited from those specified for
/tmp/hello-gcc5-release when we created the configuration with bpkg create .
What about config.import.libhello , don’t we need at least that? Not really –
libhello will be found automatically since it is part of the same amalgamation.

Of course, bpkg has no idea hello2 is now part of its configuration:

$ bpkg status -d /tmp/hello-gcc5-release/ hello2
unknown

This is what I meant when I said you can muck around in bpkg ’s back yard as long as you
understand the implications.

But is there a way to make bpkg aware of our little project? You seem to really have all the
right questions today. Actually, there is a very good reason why we would want that: if we
upgrade libhello we would want bpkg to automatically reconfigure our project. As it is
now, we will have to remember and do it ourselves.

The only way to make bpkg aware of hello2 is to turn it from merely a build2 project
into a build2 package. While the topic of packaging is also for another time and place (the
build2 package manager manual), we can get away with something as simple as this:

$ cat >hello2/manifest
: 1
name: hello2
version: 1.0.0
summary: Improved "Hello World" program
license: proprietary
url: http://example.org/hello2
email: hello2@example.org
depends: libhello >= 1.0.0

15Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

For our purposes, the only really important value in this manifest is depends since it tells
bpkg which package(s) we need. Let’s give it a try. But first we will clean up our previous
attempt at building hello2 inside /tmp/hello-gcc5-release/ :

$ b ’{clean disfigure}(/tmp/hello-gcc5-release/hello2/)’
rm /tmp/hello-gcc5-release/hello2/exe{hello}
rm /tmp/hello-gcc5-release/hello2/obje{hello}
rm /tmp/hello-gcc5-release/hello2/build/config.build
rmdir /tmp/hello-gcc5-release/hello2/

Next, we use the bpkg build command but instead of giving it a package name like we did
before, we will point it to our hello2 package directory (bpkg can fetch packages or it can
build local package archives or package directories):

$ bpkg build -d /tmp/hello-gcc5-release/ ./hello2/
 build hello2/1.0.0
continue? [Y/n] y
unpacked hello2/1.0.0
configured hello2/1.0.0
c++ hello2/cxx{hello}@/tmp/hello-gcc5-release/hello2-1.0.0/
ld /tmp/hello-gcc5-release/hello2-1.0.0/exe{hello}
updated hello2/1.0.0

Let’s upgrade libhello and see what happens:

$ bpkg build -d /tmp/hello-gcc5-release/ -L libhello
 build libformat/1.0.0 (required by libhello)
 build libprint/1.0.0 (required by libhello)
 upgrade libhello/1.1.0
 reconfigure hello2 (dependent of libhello)
continue? [Y/n] y
disfigured hello2/1.0.0
disfigured libhello/1.0.0
[... fetching & unpacking ...]
configured libformat/1.0.0
configured libprint/1.0.0
configured libhello/1.1.0
configured hello2/1.0.0
[... updating libprint, libformat, and libhello ...]
updated libhello/1.1.0

As promised, hello2 got reconfigured (it didn’t get updated because of the -L option). We
can now update it and give it a try:

$ bpkg update -d /tmp/hello-gcc5-release/ hello2
c++ hello2/cxx{hello}@/tmp/hello-gcc5-release/hello2-1.0.0/
ld /tmp/hello-gcc5-release/hello2-1.0.0/exe{hello}
updated hello2/1.0.0

$ /tmp/hello-gcc5-release/hello2-1.0.0/hello
Hello, World!

To finish off, let’s see how hard it will be to get a Clang build going:

Revision 0.4, September 201616 The build2 Toolchain Introduction

3 Introduction

$ cd /tmp
$ mkdir hello-clang36-release
$ cd hello-clang36-release

$ bpkg create c config.cxx=clang++-3.6 config.cc.coptions=-O3
created new configuration in /tmp/hello-clang36-release/

$ bpkg add https://build2.org/pkg/1/hello/testing
added repository build2.org/hello/testing

$ bpkg fetch
fetching build2.org/hello/testing
[... certificate authentication ...]
fetching build2.org/hello/stable (complements build2.org/hello/testing)
5 package(s) in 2 repository(s)

$ bpkg build libhello/1.0.0 path/to/hello2/
 build libhello/1.0.0
 build hello2/1.0.0
continue? [Y/n] y
libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s
fetched libhello/1.0.0
unpacked libhello/1.0.0
unpacked hello2/1.0.0
configured libhello/1.0.0
configured hello2/1.0.0
c++ libhello-1.0.0/hello/cxx{hello}
ld libhello-1.0.0/hello/liba{hello}
c++ libhello-1.0.0/hello/cxx{hello}
ld libhello-1.0.0/hello/libs{hello}
c++ libhello-1.0.0/tests/test/cxx{driver}
ld libhello-1.0.0/tests/test/exe{driver}
c++ /path/to/hello2/cxx{hello}@hello2-1.0.0/
ld hello2-1.0.0/exe{hello}
updated libhello/1.0.0
updated hello2/1.0.0

Are you still there? Ok, one last example. Let’s see how hard it is to cross-compile.

$ mkdir hello-mingw64
$ cd hello-mingw64

$ bpkg create cc config.cxx=x86_64-w64-mingw32-g++
created new configuration in /tmp/hello-mingw64/

$ bpkg add https://build2.org/pkg/1/hello/stable
added repository build2.org/hello/stable

$ bpkg fetch
fetching build2.org/hello/stable
[... certificate authentication ...]
2 package(s) in 1 repository(s)

$ bpkg build -y hello
libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s
fetched libhello/1.0.0
unpacked libhello/1.0.0
hello-1.0.0.tar.gz 100% of 1057 B 6882 kBps 00m01s
fetched hello/1.0.0
unpacked hello/1.0.0
configured libhello/1.0.0

17Revision 0.4, September 2016 The build2 Toolchain Introduction

3 Introduction

configured hello/1.0.0
c++ hello-1.0.0/cxx{hello}
c++ libhello-1.0.0/hello/cxx{hello}
ld libhello-1.0.0/hello/libs{hello}
ld hello-1.0.0/exe{hello}
updated hello/1.0.0

$ wine hello-1.0.0/hello.exe Windows
Hello, Windows!

In fact, on a properly setup GNU/Linux machine (that automatically uses wine as an .exe
interpreter) we can even run tests:

$ bpkg test libhello hello
c++ libhello-1.0.0/tests/test/cxx{driver}
ld libhello-1.0.0/tests/test/exe{driver}
test libhello-1.0.0/tests/test/exe{driver}
test hello-1.0.0/exe{hello}
tested libhello/1.0.0
tested hello/1.0.0

Revision 0.4, September 201618 The build2 Toolchain Introduction

3 Introduction

	1 TL;DR
	2 Warning
	3 Introduction

