
The build2 Toolchain Introduction

Copyright © 2014-2017 Code Synthesis Ltd

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.6, August 2017

This revision of the document describes the build2 toolchain 0.6.x series.

Table of Contents

.................. 11 TL;DR

.................. 12 Warning

................. 23 Introduction

iRevision 0.6, August 2017 The build2 Toolchain Introduction

Table of Contents

1 TL;DR
$ bpkg create -d hello cc

created new configuration in hello/

$ cd hello/

$ bpkg add https://build2.org/pkg/1/hello/stable

added repository build2.org/hello/stable

$ bpkg fetch

fetching build2.org/hello/stable

2 package(s) in 1 repository(s)

$ bpkg build hello

 build libhello/1.0.0 (required by hello)

 build hello/1.0.0

continue? [Y/n] y

libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s

fetched libhello/1.0.0

unpacked libhello/1.0.0

hello-1.0.0.tar.gz 100% of 1057 B 6882 kBps 00m01s

fetched hello/1.0.0

unpacked hello/1.0.0

configured libhello/1.0.0

configured hello/1.0.0

c++ hello-1.0.0/cxx{hello}

c++ libhello-1.0.0/hello/cxx{hello}

ld libhello-1.0.0/hello/libs{hello}

ld hello-1.0.0/exe{hello}

updated hello/1.0.0

2 Warning

The build2 toolchain 0.X.Y series are alpha releases. Interfaces will most likely change in

backwards-incompatible ways. But if you want to start playing with it, welcome and join the

mailing list!

Our approach to developing build2 is to first get the hard parts right before focusing on

completeness. So while we might still have no support for custom build rules, we do handle

auto-generated source code (and, in particular, headers) properly. In other words, we go depth

rather than breadth-first. As a result, there are some limitations and missing pieces, especially

in the build system. The most notable ones are:

Limited documentation.

No support for custom build system rules/modules.

1Revision 0.6, August 2017 The build2 Toolchain Introduction

1 TL;DR

https://lists.build2.org/

3 Introduction

The build2 toolchain is a set of tools designed for building and packaging C and C++ code

(though, if it can handle C++, it can handle anything, right?). The toolchain currently includes

the build system (build2), the package manager (bpkg), and the repository web interface

(brep). More tools, such as the build robot (bbot), are in the works. Then there is

cppget.org (running brep) which we hope will become the C++ package repository.

The goal of this document is to give you a basic idea of what the build2 toolchain can do so

that you can decide if you are interested and want to learn more. Further documentation is

referenced at the end of this introduction.

The build2 toolchain is self-hosted and self-packaged (and, yes, it is on cppget.org). It

could have served as its own example, however, before the toolchain can build itself, we have

to bootstrap it (that chicken and egg problem again). And this step wouldn’t serve our goal of

quickly learning what build2 is about. So, instead, we will start with a customary "Hello,

World!" example which you won’t yet be able to try yourself (but don’t worry, complete

terminal output will be shown). If at the end you find build2 appealing, you can jump

straight to The build2 Toolchain Installation and Upgrade (and, yes, there you get to run

that coveted bpkg build bpkg). Once the build2 installation is complete, you can

come back to the "Hello, World!" example and try all of the steps for yourself.

This introduction explores the consumer side of "Hello, World!". That is, we assume that

someone was kind enough to create and package the libhello library as well as the hello

program and we will learn how to obtain and build them as well as keep up with their updates.

At the end we will also see how to write our own, hello2, program that depends on

libhello. And so, without further ado, let’s begin.

Actually, one more thing: if you have a recent enough compiler and would like to try the new

C++ Modules support, then you can instead use the modularized variants of these packages:

simply replace hello with mhello and libhello with libmhello in the commands

below.

The first step in using bpkg is to create a configuration. A configuration is a directory where

packages that require similar compile settings will be built. You can create as many configu

rations as you want: for different C++ compilers, targets (build2 is big on cross-compiling),

debug/release, 32/64-bit, or even for different days of the week, if you are so inclined. Say we

are in the mood for a GCC 5 release build today:

$ mkdir hello-gcc5-release

$ cd hello-gcc5-release

$ bpkg create cxx config.cxx=g++-5 config.cxx.coptions=-O3

created new configuration in /tmp/hello-gcc5-release/

Or perhaps you are on Windows and prefer Visual Studio (running from the Visual Studio

Tools Command Prompt):

Revision 0.6, August 20172 The build2 Toolchain Introduction

3 Introduction

https://cppget.org/
https://cppget.org/

> mkdir hello-vc14-release

> cd hello-vc14-release

> bpkg create cxx config.cxx=cl config.cxx.coptions=/O2

created new configuration in C:\projects\hello-vc14-release\

One of the primary goals of the build2 toolchain is to provide a uniform build interface

across all the platforms and compilers. While the following examples use the

hello-gcc5-release configuration and assume a UNIX-like operation system, every

thing will work if you use hello-vc14-release (or hello-mingw-release) on

Windows. Just use appropriate paths, compilers, and options.

Let’s discuss that last command line: bpkg create is the command for creating a new

configuration. As a side note, if you ever want to get help for any bpkg command, run bpkg

help <command>. To see the list of commands, run just bpkg help (or see bpkg(1)).

While we are at it, if you ever want to see what bpkg is running underneath, there is the -v

(essential commands) and -V (all commands) options. And if you really want to get under the

hood, use --verbose <level>.

After the command we have cxx which is the name of the build2 build system module. As

you might have guessed, cxx provides support for the C++ compilation. By specifying this

module when creating the configuration we configure it (yes, with those config.cxx.*

variables that follow) for the entire configuration. That is, every package that we will build in

this configuration and that uses the cxx module will by default inherit these settings.

The rest of the command line are the configuration variables for the cxx module with

coptions standing for compile options (there are also poptions for preprocess options,

loptions for link options, and libs for extra libraries to link).

There is also the c module for the C compilation. So if we were planning to build both C and

C++ projects, then we could have run:

$ bpkg create c cxx ...

The problem, of course, is that you may not know what mix of languages those projects (or

their dependencies) might use. For example, the use of C might be an implementation detail

of a C++ library. To solve this, build2 provides another module called cc which stands for

C-common. So, in this context, instead of using the c and cxx modules directly, it’s a good

idea to get into the habit of using cc:

$ bpkg create cc config.cxx=g++-5 config.cc.coptions=-O3

Notice two things about this command line: we don’t need to specify the C compiler with

config.c – build2 is smart enough to figure it out from config.cxx (or vice versa).

We also used config.cc.coptions instead of config.cxx.coptions so that the

options apply to all the C-common languages (we can still use config.{c,cxx}.* for the

language-specific options).

3Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

Ok, configuration in hand, where can we get some packages? bpkg packages come from

repositories. A repository can be a local filesystem directory or a remote URL. Our example

packages come from their own remote "Hello, World!" repository:

https://build2.org/pkg/1/hello/stable/ (go ahead, browse it, I will wait).

Instead of scouring repository manifests by hand (I know you couldn’t resist), we can ask

bpkg to interrogate a repository location for us:

$ bpkg rep-info https://build2.org/pkg/1/hello/stable

warning: authenticity of the certificate for repository build2.org/hello/stable cannot be established

certificate is for build2.org, "Code Synthesis" <admin@build2.org>

certificate SHA256 fingerprint:

FF:DF:7D:38:67:4E:C3:82:[...]:30:56:B9:77:B9:F2:01:94

trust this certificate? [y/n]

The bpkg repositories are normally signed to prevent tampering with packages. If the reposi

tory certificate is seen (in this configuration) for the first time, bpkg will ask you to authenti

cate it. A good way to authenticate a certificate is to compare the displayed fingerprint to the

one you have received earlier, for example, in an email announcement. The repository’s about

page also lists the fingerprint (see the about page for our repository). For more details on

repository signing see the bpkg-repository-signing(1) help topic.

If we answer yes, we will see the basic repository information (its canonical name, location,

certificate subject and fingerprint) followed by the list of available packages:

build2.org/hello/stable https://build2.org/pkg/1/hello/stable

CN=build2.org/O=Code Synthesis/admin@build2.org

FF:DF:7D:38:67:4E:C3:82:[...]:30:56:B9:77:B9:F2:01:94

hello/1.0.0

libhello/1.0.0

We can also use the repository’s web interface (implemented by brep). Our repository has

one, check it out: https://build2.org/pkg/hello/.

Ok, back to the command line. If we want to use a repository as a source of packages in our

configuration, we have to first add it:

$ bpkg add https://build2.org/pkg/1/hello/stable

added repository build2.org/hello/stable

If we want to add several repositories, we just execute the bpkg add command for each of

them. Once this is done, we fetch the list of available packages for all the added repositories:

$ bpkg fetch

fetching build2.org/hello/stable

2 package(s) in 1 repository(s)

Note that you would normally re-run the bpkg fetch command after you’ve added another

repository or to refresh the list of available packages.

Revision 0.6, August 20174 The build2 Toolchain Introduction

3 Introduction

https://build2.org/pkg/1/hello/stable/
https://build2.org/pkg/hello/?about
https://build2.org/pkg/hello/

Now that bpkg knows where to get the packages, we can finally get down to business:

$ bpkg build hello

 build libhello/1.0.0 (required by hello)

 build hello/1.0.0

continue? [Y/n]

Let’s see what’s going on here. We ran bpkg build to build the hello program which

happens to depend on the libhello library. So bpkg presents us with a plan of action, that

is, the steps it will have to perform in order to build us hello and then asks us to confirm if

that’s what we want to do (you can add --yes|-y to skip the confirmation). In the

real-world usage the plan will be more complex, with upgrades/downgrades, reconfigurations,

etc.

Let’s answer yes and see what happens:

libhello-1.0.0.tar.gz 100% of 2428 B 1364 kBps 00m01s

fetched libhello/1.0.0

unpacked libhello/1.0.0

hello-1.0.0.tar.gz 100% of 1057 B 20 MBps 00m01s

fetched hello/1.0.0

unpacked hello/1.0.0

configured libhello/1.0.0

configured hello/1.0.0

c++ hello-1.0.0/cxx{hello}

c++ libhello-1.0.0/hello/cxx{hello}

ld libhello-1.0.0/hello/libs{hello}

ld hello-1.0.0/exe{hello}

updated hello/1.0.0

While the output is mostly self-explanatory, in short, bpkg downloaded, unpacked, and

configured both packages and then proceeded to building the hello executable which

happens to require building the libhello library. Note that the download progress may

look differently on your machine depending on which fetch tool (wget, curl, or fetch) is

used. If you ever considered giving that -v option a try, now would be a good time. But let’s

first drop (bpkg drop) the hello package so that we get the same build from scratch:

$ bpkg drop hello

following prerequisite packages were automatically built and will no longer be necessary:

 libhello

drop prerequisite packages? [Y/n] y

 drop hello

 drop libhello

continue? [Y/n] y

disfigured hello

disfigured libhello

purged hello

purged libhello

Ok, ready for some -v details? Feel free to skip the following listing if you are not interested.

$ bpkg build -v -y hello

fetching libhello-1.0.0.tar.gz from build2.org/hello/stable

curl ... https://build2.org/pkg/1/hello/stable/libhello-1.0.0.tar.gz

 % Total % Received Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 2428 100 2428 1121 0 0:00:01 0:00:01 --:--:-- 1122

fetched libhello/1.0.0

5Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

tar -xf libhello-1.0.0.tar.gz

unpacked libhello/1.0.0

fetching hello-1.0.0.tar.gz from build2.org/hello/stable

curl ... https://build2.org/pkg/1/hello/stable/hello-1.0.0.tar.gz

 % Total % Received Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 1057 100 1057 773 0 0:00:01 0:00:01 --:--:-- 772

fetched hello/1.0.0

tar -xf hello-1.0.0.tar.gz

unpacked hello/1.0.0

b -v configure(./libhello-1.0.0/)

cat >libhello-1.0.0/build/config.build

configured libhello/1.0.0

b -v configure(./hello-1.0.0/)

cat >hello-1.0.0/build/config.build

configured hello/1.0.0

hold package hello

b -v update(./hello-1.0.0/)

g++-5 -I libhello-1.0.0 -O3 -std=c++11 -o hello-1.0.0/hello.o -c hello-1.0.0/hello.cxx

g++-5 -I libhello-1.0.0 -O3 -std=c++11 -fPIC -o libhello-1.0.0/hello/hello.so.o -c libhello-1.0.0/hello/hello.cxx

g++-5 -O3 -std=c++11 -shared -o libhello-1.0.0/hello/libhello-1.0.so libhello-1.0.0/hello/hello.so.o

g++-5 -O3 -std=c++11 -o hello-1.0.0/hello hello-1.0.0/hello.o libhello-1.0.0/hello/libhello-1.0.so

updated hello/1.0.0

Another handy command is bpkg status. It can be used to examine the state of a package

in the configuration. Here are a few examples (if you absolutely must know what

hold_package and sys:? mean, check bpkg-pkg-status(1)):

$ bpkg status libhello

configured 1.0.0; available sys:?

$ bpkg status hello

configured 1.0.0 hold_package; available sys:?

$ bpkg drop -y hello

disfigured hello

disfigured libhello

purged hello

purged libhello

$ bpkg status hello

available 1.0.0 sys:?

$ bpkg status libfoobar

unknown

Let’s say we got wind of a new development: the libhello author released a new version

of the library. It is such an advance in the art of "Hello, World!", it’s only currently available

from testing. Of course, we must check it out.

Now, what exactly is testing? You must have noticed that the repository location that

we’ve been using so far ended with /stable. Quite often it is useful to split our repository

into sub-repositories or sections. For example, to reflect the maturity of packages (say,

stable and testing, as in our case) or to divide them into sub-categories (misc and

math) or even some combination (math/testing). Note, however, that to bpkg these

sub-repositories or sections are just normal repositories and there is nothing special about

them.

We are impatient to try the new version so we will skip interrogating the repository with

rep-info and just add it to our configuration. After all, we can always check with status

if any upgrades are available for packages we are interested in. Here we assume the configura

Revision 0.6, August 20176 The build2 Toolchain Introduction

3 Introduction

tion has hello built (run bpkg build -y hello to get to that state).

$ bpkg add https://build2.org/pkg/1/hello/testing

added repository build2.org/hello/testing

$ bpkg fetch

fetching build2.org/hello/stable

fetching build2.org/hello/testing

5 package(s) in 2 repository(s)

Notice that this time we don’t see any authentication-related messages or prompts since bpkg

remembered (in this configuration) that we trust the certificate (testing naturally uses the

same one as stable).

Let’s see what’s new:

$ bpkg status libhello

configured 1.0.0; available 1.1.0 sys:?

Ok, libhello/1.1.0 is now available. How do we upgrade? We can try to build hello

again:

$ bpkg build -y hello

info: dir{hello-1.0.0/} is up to date

updated hello/1.0.0

Why did nothing happenned? Because bpkg will only upgrade (or downgrade) to a new

version if we explicitly ask it to. As things stand, all dependencies for hello are satisfied

and bpkg is happy to twiddle its thumbs. Let’s tell bpkg to build us libhello instead:

$ bpkg build libhello

 build libformat/1.0.0 (required by libhello)

 build libprint/1.0.0 (required by libhello)

 upgrade libhello/1.1.0

 reconfigure hello (dependent of libhello)

continue? [Y/n]

Ok, now we are getting somewhere. It looks like the new version of libhello went really

enterprise-grade (or is it called web-scale these days?). There are now two new dependencies

(libformat and libprint) that we will have to build in order to upgrade. Maybe we

should answer no here?

Notice also that reconfigure hello line. If you think about this, it makes sense: we are

getting a new version of libhello and hello depends on it so it might need a chance to

make some adjustments to its configuration.

Let’s answer yes if only to see what happens:

update dependent packages? [Y/n]

Another question. This one has to do with that reconfigure hello line we just talked

about. If you were wondering why we were only offered to reconfigure and not actually

update the dependent package, you should know that bpkg is a very lazy package manager, it

7Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

only does what it must do, not what might be nice to do. It must reconfigure but it doesn’t

really have to update. And this could be a good thing if, for example, you have a hundred

dependents in your configuration but right now you only want to build just those specific

packages. However, quite often, you do want to keep all the packages in your configuration

up to date and bpkg graciously offers to take care of this task. Ok, let’s answer yes again:

...

update dependent packages? [Y/n] y

disfigured hello/1.0.0

disfigured libhello/1.0.0

libformat-1.0.0.tar.gz 100% of 1064 B 11 MBps 00m01s

fetched libformat/1.0.0

unpacked libformat/1.0.0

libprint-1.0.0.tar.gz 100% of 1040 B 9 MBps 00m01s

fetched libprint/1.0.0

unpacked libprint/1.0.0

libhello-1.1.0.tar.gz 100% of 1564 B 4672 kBps 00m01s

fetched libhello/1.1.0

unpacked libhello/1.1.0

configured libformat/1.0.0

configured libprint/1.0.0

configured libhello/1.1.0

configured hello/1.0.0

c++ libhello-1.1.0/hello/cxx{hello}

c++ libformat-1.0.0/format/cxx{format}

ld libformat-1.0.0/format/liba{format}

c++ libprint-1.0.0/print/cxx{print}

ld libprint-1.0.0/print/liba{print}

ld libhello-1.1.0/hello/liba{hello}

c++ libhello-1.1.0/hello/cxx{hello}

c++ libformat-1.0.0/format/cxx{format}

ld libformat-1.0.0/format/libs{format}

c++ libprint-1.0.0/print/cxx{print}

ld libprint-1.0.0/print/libs{print}

ld libhello-1.1.0/hello/libs{hello}

c++ libhello-1.1.0/tests/test/cxx{driver}

ld libhello-1.1.0/tests/test/exe{driver}

c++ hello-1.0.0/cxx{hello}

ld hello-1.0.0/exe{hello}

updated libhello/1.1.0

updated hello/1.0.0

A lot of output but nothing really new. If you were to answer no to the "update dependent

packages?" question above, it is easy to make sure a package is up-to-date at a later time with

the bpkg update command (there is also bpkg clean), for example:

$ bpkg clean hello

rm hello-1.0.0/exe{hello}

rm hello-1.0.0/obje{hello}

cleaned hello/1.0.0

$ bpkg update hello

c++ hello-1.0.0/cxx{hello.cxx}

ld hello-1.0.0/exe{hello}

updated hello/1.0.0

Revision 0.6, August 20178 The build2 Toolchain Introduction

3 Introduction

Let’s say we really don’t like the direction libhello is going and would rather stick to

version 1.0.0. Just like upgrades, downgrades are explicit plus, in this case, we need to

specify the version (you can also specify the desired version for upgrades).

$ bpkg build libhello/1.0.0

 downgrade libhello/1.0.0

 reconfigure hello (dependent of libhello)

continue? [Y/n] y

update dependent packages? [Y/n] y

disfigured hello/1.0.0

disfigured libhello/1.1.0

libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s

fetched libhello/1.0.0

unpacked libhello/1.0.0

configured libhello/1.0.0

configured hello/1.0.0

following prerequisite packages were automatically built and will no longer be necessary:

 libprint

 libformat

drop prerequisite packages? [Y/n] y

disfigured libprint

disfigured libformat

purged libprint

purged libformat

c++ libhello-1.0.0/hello/cxx{hello}

ld libhello-1.0.0/hello/liba{hello}

c++ libhello-1.0.0/hello/cxx{hello}

ld libhello-1.0.0/hello/libs{hello}

c++ libhello-1.0.0/tests/test/cxx{driver}

ld libhello-1.0.0/tests/test/exe{driver}

c++ hello-1.0.0/cxx{hello}

ld hello-1.0.0/exe{hello}

updated libhello/1.0.0

updated hello/1.0.0

Notice how bpkg helpfully offered to get rid of libprint and libformat which we

won’t be needing anymore. Note also that while we can use --yes|y as an answer to all the

numerous prompts, there are also more granular options. For example, this is how we can

instruct bpkg to drop prerequisites (--drop-prerequisite|-D) but leave dependents

just reconfigured (--leave-dependent|-L):

$ bpkg build -D -L libhello/1.0.0

Ok, so all this might look nice and all, but we haven’t actually seen anything of what we’ve

presumably built; it can all be a charade, for all we know. Can we see some libraries and run

the hello program?

There are several ways we can do this. If the package provides tests (as all good packages

should), we can run them with the bpkg test command:

$ bpkg test libhello hello

test libhello-1.0.0/tests/test/exe{driver}

test hello-1.0.0/exe{hello}

tested libhello/1.0.0

tested hello/1.0.0

9Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

But that doesn’t quite count for seeing libraries and running programs. Well, if you insist, let’s

see what’s inside hello-gcc5-release/. The bpkg configuration (this

hello-gcc5-release/ directory) is, in the build2 build system terms, an amalgama

tion – a project that contains subprojects. Not surprisingly, the subprojects in this amalgama

tion are the packages that we’ve built:

$ ls -1F

build/

hello-1.0.0/

libhello-1.0.0/

buildfile

hello-1.0.0.tar.gz

libhello-1.0.0.tar.gz

And if we look inside hello-1.0.0/ we will see what looks like the hello program:

$ ls -1F hello-1.0.0/

build/

buildfile

hello*

hello.d

hello.cxx

hello.o

hello.o.d

manifest

test.out

version

$ hello-1.0.0/hello

usage: hello <name>...

$ hello-1.0.0/hello World

Hello, World!

The important point here is this: the bpkg configuration is not some black box that you

should never look inside of. On the contrary, it is a normal and predictable concept of the

build system and as long as you understand what you are doing, feel free to muck around.

Another way to get hold of a package’s goodies is to install it with bpkg install. Let’s

try that:

$ bpkg install \

 config.install.root=/opt/hello \

 config.install.sudo=sudo \

 hello

install /opt/hello/

install /opt/hello/include/

install /opt/hello/include/hello/

install libhello-1.0.0/hello/hxx{hello}

install libhello-1.0.0/hello/hxx{export}

install /opt/hello/lib/

install libhello-1.0.0/hello/libs{hello}

install /opt/hello/bin/

install hello-1.0.0/exe{hello}

install /opt/hello/share/

Revision 0.6, August 201710 The build2 Toolchain Introduction

3 Introduction

install /opt/hello/share/doc/

install /opt/hello/share/doc/hello/

install hello-1.0.0/doc{version}

installed hello/1.0.0

The config.install.sudo value is the optional sudo-like program that should be used

to run the install program. For those feeling queasy running sudo make install,

here is your answer. If you are wondering whether you could have specified those

config.install.* values during the configuration creation, the answer is yes, indeed!

Let’s see what we’ve got:

$ tree -F /opt/hello/

/opt/hello/

âââ bin/

â âââ hello*

âââ include/

â âââ libhello/

â âââ export

â âââ hello

âââ lib/

â âââ libhello-1.0.so*

â âââ libhello.so -> libhello-1.0.so*

âââ share/

 âââ doc/

 âââ hello/

 âââ version

We can also try to run the installed program:

$ /opt/hello/bin/hello World

/opt/hello/bin/hello: error while loading shared libraries: libhello-1.0.so: cannot open shared object file: No such file or directory

Not what we hoped to see. Note to the Windows users: this will actually work since

hello-1.0.dll will be installed into bin\, next to the executable; for once things are

working better on Windows.

The problem is with our installation location: the runtime linker won’t look for

libhello-1.0.so in /opt/hello/lib unless we somehow tell it to (for example,

using LD_LIBRARY_PATH or equivalent). There are several ways we can resolve this. We

could give up on shared libraries and link our prerequisite libraries statically

(config.bin.exe.lib=static). Or we could use the rpath mechanism:

$ bpkg install \

 config.install.root=/opt/hello \

 config.install.sudo=sudo \

 config.bin.rpath=/opt/hello/lib \

 hello

ld hello-1.0.0/exe{hello}

install /opt/hello/

install /opt/hello/include/

install /opt/hello/include/hello/

install libhello-1.0.0/hello/hxx{hello}

install libhello-1.0.0/hello/hxx{export}

install /opt/hello/lib/

install libhello-1.0.0/hello/libs{hello}

11Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

install /opt/hello/bin/

install hello-1.0.0/exe{hello}

install /opt/hello/share/

install /opt/hello/share/doc/

install /opt/hello/share/doc/hello/

install hello-1.0.0/doc{version}

installed hello/1.0.0

$ /opt/hello/bin/hello World

Hello, World!

Notice that ld line above – this is where our executable is re-linked with the -rpath option.

We can also uninstall what we have installed with bpkg uninstall:

$ bpkg uninstall \

 config.install.root=/opt/hello \

 config.install.sudo=sudo \

 hello

uninstall hello-1.0.0/doc{version}

uninstall /opt/hello/share/doc/hello/

uninstall /opt/hello/share/doc/

uninstall /opt/hello/share/

uninstall hello-1.0.0/exe{hello}

uninstall /opt/hello/bin/

uninstall libhello-1.0.0/hello/libs{hello}

uninstall /opt/hello/lib/

uninstall libhello-1.0.0/hello/hxx{export}

uninstall libhello-1.0.0/hello/hxx{hello}

uninstall /opt/hello/include/hello/

uninstall /opt/hello/include/

uninstall /opt/hello/

uninstalled hello/1.0.0

$ ls /opt/hello

ls: cannot access /opt/hello: No such file or directory

What if we wanted to use libhello in our own project? While installing it is always an

option, this may not be convenient when we develop our code. We may have multiple builds

per project, for example, with GCC and Clang to catch all the warnings. We may also want to

make sure our application works well with several versions of libhello (and maybe even

with that heinous 1.1.X). While we can install different configurations into different directo

ries, it’s hard to deny things are getting a bit hairy: multiple configurations, multiple installa

tions... I guess we will have to get our hands into that cookie jar, I mean, configuration, again.

In fact, let’s just start writing our own version of the hello program and see how it goes:

Revision 0.6, August 201712 The build2 Toolchain Introduction

3 Introduction

$ mkdir hello2

$ cd hello2

$ cat >hello.cpp

#include <libhello/hello>

int main ()

{

 hello::say ("World");

}

What build system shall we use? I can’t believe you are even asking this question...

$ mkdir build

$ cat >build/bootstrap.build

project = hello2 # project name

using config # config module (those config.*)

$ cat >build/root.build

cxx.std = 11 # C++ standard

using cxx # C++ module

cxx{*}: extension = cpp # C++ source file extension

$ cat >buildfile

import libs = libhello%lib{hello}

exe{hello}: cxx{hello} $libs

While some of this might not be crystal clear (like why do we have bootstrap.build

and root.build), I am sure you at least have a fuzzy idea of what’s going on. And that’s

enough for what we are after here. Completely explaining what’s going on here and, more

importantly, why it’s going this way is for another time and place (the build2 build system

manual).

To recap, these are the contents of our project so far:

$ tree -F

.

âââ build/

â âââ bootstrap.build

â âââ root.build

âââ buildfile

âââ hello.cpp

Let’s try to build it and see what happens – maybe it will magically work (b(1) is the

build2 build system driver).

$ b config.cxx=g++-5

error: unable to import target libhello%lib{hello}

 info: use config.import.libhello command line variable to specifying its project out_root

 info: while applying rule cxx.link to update exe{hello}

 info: while applying rule alias to update dir{./}

13Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

No magic, unfortunately (or fortunately). But we got a hint: looks like we need to tell

build2 where libhello is using config.import.libhello. Without fretting too

much about what exactly out_root means, let’s point build2 to our bpkg configuration

and see what happens. After all, that’s where, more or less, our out-put for libhello is.

$ b config.cxx=g++-5 \

 config.import.libhello=/tmp/hello-gcc5-release

c++ cxx{hello}

ld exe{hello}

Almost magic. Let’s see what we’ve got:

$ tree -F

.

âââ build/

â âââ bootstrap.build

â âââ root.build

âââ buildfile

âââ hello*

âââ hello.d

âââ hello.cpp

âââ hello.o

âââ hello.o.d

$./hello

Hello, World!

Let’s change something in our source code and try to update:

$ touch hello.cpp

$ b

error: unable to import target libhello%lib{hello}

 info: use config.import.libhello command line variable to specifying its project out_root

 info: while applying rule cxx.link to update exe{hello}

 info: while applying rule alias to update dir{./}

Looks like we have to keep repeating those config.* values and who wants that? To get rid

of this annoyance we have to make our configuration permanent. Also, seeing that we plan to

have several of them (GCC/Clang, different version of libhello), it makes sense to create

them out of source tree. Let’s get to it:

$ cd ..

$ mkdir hello2-gcc5-release

$ ls -1F

hello2/

hello2-gcc5-release/

$ b config.cxx=g++-5 \

 config.cc.coptions=-O3 \

 config.import.libhello=/tmp/hello-gcc5-release \

 ’configure(hello2/@hello2-gcc5-release/)’

mkdir -p hello2-gcc5-release/build/

save hello2-gcc5-release/build/config.build

Revision 0.6, August 201714 The build2 Toolchain Introduction

3 Introduction

Translated, configure(hello2/@hello2-gcc5-release/) means "configure the

hello2/ source directory in the hello2-gcc5-release/ output directory". In

build2 this source directory is called src_root and output directory – out_root. Hm,

we’ve already heard out_root mentioned somewhere before...

Once the configuration is saved, we can develop our project without any annoyance:

$ b hello2-gcc5-release/

c++ hello2/cxx{hello}

ld hello2-gcc5-release/exe{hello}

$ cd hello2-gcc5-release/

$ b

info: dir{./} is up to date

$ b clean

rm exe{hello}

rm obje{hello}

$ b -v

g++-5 -I/tmp/hello-gcc5-release/libhello-1.0.0 -O3 -std=c++11 -o hello.o -c ../hello2/hello.cpp

g++-5 -O3 -std=c++11 -o hello hello.o /tmp/hello-gcc5-release/libhello-1.0.0/hello/libhello-1.0.so

Some of you might have noticed that hello2-gcc5-release/ and

/tmp/hello-gcc5-release/ look awfully similar and are now wondering if we could

instead build hello2 inside /tmp/hello-gcc5-release/? I am glad you’ve asked. In

fact, we can just do:

$ cd ..

$ ls -1F

hello2/

hello2-gcc5-release/

$ b ’configure(hello2/@/tmp/hello-gcc5-release/hello2/)’

mkdir -p /tmp/hello-gcc5-release/hello2/build/

save /tmp/hello-gcc5-release/hello2/build/config.build

$ b /tmp/hello-gcc5-release/hello2/

c++ hello2/cxx{hello}@/tmp/hello-gcc5-release/hello2/

ld /tmp/hello-gcc5-release/hello2/exe{hello}

Now that might seem like magic, but it’s actually pretty logical. Why don’t we need to specify

any of the config.c* values this time? Because they are inherited from those specified for

/tmp/hello-gcc5-release when we created the configuration with bpkg create.

What about config.import.libhello, don’t we need at least that? Not really –

libhello will be found automatically since it is part of the same amalgamation.

Of course, bpkg has no idea hello2 is now part of its configuration:

$ bpkg status -d /tmp/hello-gcc5-release/ hello2

unknown

This is what I meant when I said you can muck around in bpkg’s back yard as long as you

understand the implications.

15Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

But is there a way to make bpkg aware of our little project? You seem to really have all the

right questions today. Actually, there is a very good reason why we would want that: if we

upgrade libhello we would want bpkg to automatically reconfigure our project. As it is

now, we will have to remember and do it ourselves.

The only way to make bpkg aware of hello2 is to turn it from merely a build2 project

into a build2 package. While the topic of packaging is also for another time and place (the

build2 package manager manual), we can get away with something as simple as this:

$ cat >hello2/manifest

: 1

name: hello2

version: 1.0.0

summary: Improved "Hello World" program

license: proprietary

url: http://example.org/hello2

email: hello2@example.org

depends: libhello >= 1.0.0

For our purposes, the only really important value in this manifest is depends since it tells

bpkg which package(s) we need. Let’s give it a try. But first we will clean up our previous

attempt at building hello2 inside /tmp/hello-gcc5-release/:

$ b ’{clean disfigure}(/tmp/hello-gcc5-release/hello2/)’

rm /tmp/hello-gcc5-release/hello2/exe{hello}

rm /tmp/hello-gcc5-release/hello2/obje{hello}

rm /tmp/hello-gcc5-release/hello2/build/config.build

rmdir /tmp/hello-gcc5-release/hello2/

Next, we use the bpkg build command but instead of giving it a package name like we did

before, we will point it to our hello2 package directory (bpkg can fetch packages or it can

build local package archives or package directories):

$ bpkg build -d /tmp/hello-gcc5-release/ ./hello2/

 build hello2/1.0.0

continue? [Y/n] y

unpacked hello2/1.0.0

configured hello2/1.0.0

c++ hello2/cxx{hello}@/tmp/hello-gcc5-release/hello2-1.0.0/

ld /tmp/hello-gcc5-release/hello2-1.0.0/exe{hello}

updated hello2/1.0.0

Let’s upgrade libhello and see what happens:

$ bpkg build -d /tmp/hello-gcc5-release/ -L libhello

 build libformat/1.0.0 (required by libhello)

 build libprint/1.0.0 (required by libhello)

 upgrade libhello/1.1.0

 reconfigure hello2 (dependent of libhello)

continue? [Y/n] y

disfigured hello2/1.0.0

disfigured libhello/1.0.0

[... fetching & unpacking ...]

configured libformat/1.0.0

configured libprint/1.0.0

Revision 0.6, August 201716 The build2 Toolchain Introduction

3 Introduction

configured libhello/1.1.0

configured hello2/1.0.0

[... updating libprint, libformat, and libhello ...]

updated libhello/1.1.0

As promised, hello2 got reconfigured (it didn’t get updated because of the -L option). We

can now update it and give it a try:

$ bpkg update -d /tmp/hello-gcc5-release/ hello2

c++ hello2/cxx{hello}@/tmp/hello-gcc5-release/hello2-1.0.0/

ld /tmp/hello-gcc5-release/hello2-1.0.0/exe{hello}

updated hello2/1.0.0

$ /tmp/hello-gcc5-release/hello2-1.0.0/hello

Hello, World!

To finish off, let’s see how hard it will be to get a Clang build going:

$ cd /tmp

$ mkdir hello-clang36-release

$ cd hello-clang36-release

$ bpkg create cc config.cxx=clang++-3.6 config.cc.coptions=-O3

created new configuration in /tmp/hello-clang36-release/

$ bpkg add https://build2.org/pkg/1/hello/testing

added repository build2.org/hello/testing

$ bpkg fetch

fetching build2.org/hello/testing

[... certificate authentication ...]

fetching build2.org/hello/stable (complements build2.org/hello/testing)

5 package(s) in 2 repository(s)

$ bpkg build libhello/1.0.0 path/to/hello2/

 build libhello/1.0.0

 build hello2/1.0.0

continue? [Y/n] y

libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s

fetched libhello/1.0.0

unpacked libhello/1.0.0

unpacked hello2/1.0.0

configured libhello/1.0.0

configured hello2/1.0.0

c++ libhello-1.0.0/hello/cxx{hello}

ld libhello-1.0.0/hello/liba{hello}

c++ libhello-1.0.0/hello/cxx{hello}

ld libhello-1.0.0/hello/libs{hello}

c++ libhello-1.0.0/tests/test/cxx{driver}

ld libhello-1.0.0/tests/test/exe{driver}

c++ /path/to/hello2/cxx{hello}@hello2-1.0.0/

ld hello2-1.0.0/exe{hello}

updated libhello/1.0.0

updated hello2/1.0.0

Are you still there? Ok, one last example. Let’s see how hard it is to cross-compile.

17Revision 0.6, August 2017 The build2 Toolchain Introduction

3 Introduction

$ mkdir hello-mingw64

$ cd hello-mingw64

$ bpkg create cc config.cxx=x86_64-w64-mingw32-g++

created new configuration in /tmp/hello-mingw64/

$ bpkg add https://build2.org/pkg/1/hello/stable

added repository build2.org/hello/stable

$ bpkg fetch

fetching build2.org/hello/stable

[... certificate authentication ...]

2 package(s) in 1 repository(s)

$ bpkg build -y hello

libhello-1.0.0.tar.gz 100% of 2428 B 983 kBps 00m01s

fetched libhello/1.0.0

unpacked libhello/1.0.0

hello-1.0.0.tar.gz 100% of 1057 B 6882 kBps 00m01s

fetched hello/1.0.0

unpacked hello/1.0.0

configured libhello/1.0.0

configured hello/1.0.0

c++ hello-1.0.0/cxx{hello}

c++ libhello-1.0.0/hello/cxx{hello}

ld libhello-1.0.0/hello/libs{hello}

ld hello-1.0.0/exe{hello}

updated hello/1.0.0

$ wine hello-1.0.0/hello.exe Windows

Hello, Windows!

In fact, on a properly setup GNU/Linux machine (that automatically uses wine as an .exe

interpreter) we can even run tests:

$ bpkg test libhello hello

c++ libhello-1.0.0/tests/test/cxx{driver}

ld libhello-1.0.0/tests/test/exe{driver}

test libhello-1.0.0/tests/test/exe{driver}

test hello-1.0.0/exe{hello}

tested libhello/1.0.0

tested hello/1.0.0

Revision 0.6, August 201718 The build2 Toolchain Introduction

3 Introduction

	1 TL;DR
	2 Warning
	3 Introduction

