
The build2 Build System

Copyright © 2014-2018 Code Synthesis Ltd

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.7, May 2018

This revision of the document describes the build2 build system 0.7.x series.

Table of Contents

................... 1Preface

................. 11 Name Patterns

.................. 42 Grammar

................. 43 Test Module

................. 54 Version Module

................ 135 cxx (C++) Module

.............. 135.1 C++ Modules Support

............ 135.1.1 Modules Introduction

............. 205.1.2 Building Modules

........... 235.1.3 Module Symbols Exporting

............. 255.1.4 Modules Installation

........... 265.1.5 Modules Design Guidelines

........... 325.1.6 Modularizing Existing Code

iRevision 0.7, May 2018 The build2 Build System

Table of Contents

Preface

This document describes the build2 build system. For the build system driver command line

interface refer to the b(1) man pages.

1 Name Patterns

For convenience, in certain contexts, names can be generated with shell-like wildcard patterns. A

name is a name pattern if its value contains one or more unquoted wildcard characters or charac

ter sequences. For example:

./: */ # All (immediate) subdirectories

exe{hello}: {hxx cxx}{**} # All C++ header/source files.

pattern = ’*.txt’ # Literal ’*.txt’.

Pattern-based name generation is not performed in certain contexts. Specifically, it is not

performed in target names where it is interpreted as a pattern for target type/pattern-specific vari

able assignments. For example.

s = *.txt # Variable assignment (performed).

./: cxx{*} # Prerequisite names (performed).

cxx{*}: dist = false # Target pattern (not performed).

In contexts where it is performed, it can be inhibited with quoting, for example:

pat = ’foo*bar’

./: cxx{’foo*bar’}

The following characters are wildcards:

* - match any number of characters (including zero)

? - match any single character

If a pattern ends with a directory separator, then it only matches directories. Otherwise, it only

matches files. Matches that start with a dot (.) are automatically ignored unless the pattern itself

also starts with this character.

In addition to the above wildcard characters, ** and *** are recognized as wildcard character

sequences. If a pattern contains **, then it is matched just like * but in all the subdirectories,

recursively. The *** wildcard behaves like ** but also matches the start directory itself. For

example:

exe{hello}: cxx{**} # All C++ source files recursively.

1Revision 0.7, May 2018 The build2 Build System

Preface

A group-enclosed ({}) pattern value may be followed by inclusion/exclusion patterns/matches. A

subsequent value is treated as an inclusion or exclusion if it starts with a literal, unquoted plus (+)

or minus (-) sign, respectively. In this case the remaining group values, if any, must all be inclu

sions or exclusions. If the second value doesn’t start with a plus or minus, then all the group

values are considered independent with leading pluses and minuses not having any special

meaning. For regularity, the first pattern can also start with the plus sign. For example:

exe{hello}: cxx{f* -foo} # Exclude foo if present.

exe{hello}: cxx{f* +foo} # Include foo if not present.

exe{hello}: cxx{f* -fo?} # Exclude foo and fox if present.

exe{hello}: cxx{f* +b* -foo -bar} # Exclude foo and bar if present.

exe{hello}: cxx{+f* +b* -foo -bar} # Same as above.

exe{hello}: cxx{f* b* -z*} # Names matching three patterns.

Inclusions and exclusions are applied in the order specified and only to the result produced up to

that point. The order of names in the result is unspecified. However, it is guaranteed not to

contain duplicates. The pattern and the following inclusions/exclusions must be consistent with

regards to the type of filesystem entry they match. That is, they should all match either files or

directories. For example:

exe{hello}: cxx{f* -foo +*oo} # Exclusion has no effect.

exe{hello}: cxx{f* +*oo} # Ok, no duplicates.

./: {*/ -build} # Error: exclusion not a directory.

As a more realistic example, let’s say we want to exclude source files that reside in the test/

directories (and their subdirectories) anywhere in the tree. This can be achieved with the follow

ing pattern:

exe{hello}: cxx{** -***/test/**}

Similarly, if we wanted to exclude all source files that have the -test suffix:

exe{hello}: cxx{** -**-test}

In contrast, the following pattern only excludes such files from the top directory:

exe{hello}: cxx{** -*-test}

If many inclusions or exclusions need to be specified, then an inclusion/exclusion group can be

used. For example:

exe{hello}: cxx{f* -{foo bar}}

exe{hello}: cxx{+{f* b*} -{foo bar}}

This is particularly useful if you would like to list the names to include or exclude in a variable.

For example, this is how we can exclude certain files from compilation but still include them as

ordinary file prerequisites (so that they are still included into the distribution):

Revision 0.7, May 20182 The build2 Build System

1 Name Patterns

exc = foo.cxx bar.cxx

exe{hello}: cxx{+{f* b*} -{$exc}} file{$exc}

If we want to specify our pattern in a variable, then we have to use the explicit inclusion syntax,

for example:

pat = ’f*’

exe{hello}: cxx{+$pat} # Pattern match.

exe{hello}: cxx{$pat} # Literal ’f*’.

pat = ’+f*’

exe{hello}: cxx{$pat} # Literal ’+f*’.

inc = ’f*’ ’b*’

exc = ’f*o’ ’b*r’

exe{hello}: cxx{+{$inc} -{$exc}}

One common situation that calls for exclusions is auto-generated source code. Let’s say we have

auto-generated command line parser in options.hxx and options.cxx. Because of the

in-tree builds, our name pattern may or may not find these files. Note, however, that we cannot

just include them as non-pattern prerequisites. We also have to exclude them from the pattern

match since otherwise we may end up with duplicate prerequisites. As a result, this is how we

have to handle this case provided we want to continue using patterns to find other, non-generated

source files:

exe{hello}: {hxx cxx}{* -options} {hxx cxx}{options}

If the name pattern includes an absolute directory, then the pattern match is performed in that

directory and the generated names include absolute directories as well. Otherwise, the pattern

match is performed in the pattern base directory. In buildfiles this is src_base while on the

command line – the current working directory. In this case the generated names are relative to the

base directory. For example, assuming we have the foo.cxx and b/bar.cxx source files:

exe{hello}: $src_base/cxx{**} # $src_base/cxx{foo} $src_base/b/cxx{bar}

exe{hello}: cxx{**} # cxx{foo} b/cxx{bar}

Pattern matching as well as inclusion/exclusion logic is target type-specific. If the name pattern

does not contain a type, then the dir{} type is assumed if the pattern ends with a directory sepa

rator and file{} otherwise.

For the dir{} target type the trailing directory separator is added to the pattern and all the inclu

sion/exclusion patterns/matches that do not already end with one. Then the filesystem search is

performed for matching directories. For example:

./: dir{* -build} # Search for */, exclude build/.

3Revision 0.7, May 2018 The build2 Build System

1 Name Patterns

For the file{} and file{}-based target types the default extension (if any) is added to the

pattern and all the inclusion/exclusion patterns/matches that do not already contain an extension.

Then the filesystem search is performed for matching files.

For example, the cxx{} target type obtains the default extension from the extension vari

able. Assuming we have the following line in our root.build:

cxx{*}: extension = cxx

And the following in our buildfile:

exe{hello}: {cxx}{* -foo -bar.cxx}

The pattern match will first search for all the files matching the *.cxx pattern in src_base

and then exclude foo.cxx and bar.cxx from the result. Note also that target type-specific

decorations are removed from the result. So in the above example if the pattern match produces

baz.cxx, then the prerequisite name is cxx{baz}, not cxx{baz.cxx}.

If the name generation cannot be performed because the base directory is unknown, target type is

unknown, or the target type is not directory or file-based, then the name pattern is returned as is

(that is, as an ordinary name). Project-qualified names are never considered to be patterns.

2 Grammar
eval: ’(’ (eval-comma | eval-qual)? ’)’

eval-comma: eval-ternary (’,’ eval-ternary)*

eval-ternary: eval-or (’?’ eval-ternary ’:’ eval-ternary)?

eval-or: eval-and (’||’ eval-and)*

eval-and: eval-comp (’&&’ eval-comp)*

eval-comp: eval-value ((’==’|’!=’|’<’|’>’|’<=’|’>=’) eval-value)*

eval-value: value-attributes? (<value> | eval | ’!’ eval-value)

eval-qual: <name> ’:’ <name>

value-attributes: ’[’ <key-value-pairs> ’]’

Note that ?: (ternary operator) and ! (logical not) are right-associative. Unlike C++, all the

comparison operators have the same precedence. A qualified name cannot be combined with any

other operator (including ternary) unless enclosed in parentheses. The eval option in the

eval-value production shall contain single value only (no commas).

3 Test Module

The targets to be tested as well as the tests/groups from testscripts to be run can be narrowed

down using the config.test variable. While this value is normally specified as a command

line override (for example, to quickly re-run a previously failed test), it can also be persisted in

config.build in order to create a configuration that will only run a subset of tests by default.

Revision 0.7, May 20184 The build2 Build System

2 Grammar

For example:

b test config.test=foo/exe{driver} # Only test foo/exe{driver} target.

b test config.test=bar/baz # Only run bar/baz testscript test.

The config.test variable contains a list of @-separated pairs with the left hand side being the

target and the right hand side being the testscript id path. Either can be omitted (along with @). If

the value contains a target type or ends with a directory separator, then it is treated as a target

name. Otherwise – an id path. The targets are resolved relative to the root scope where the

config.test value is set. For example:

b test config.test=foo/exe{driver}@bar

To specify multiple id paths for the same target we can use the pair generation syntax:

b test config.test=foo/exe{driver}@{bar baz}

If no targets are specified (only id paths), then all the targets are tested (with the testscript tests to

be run limited to the specified id paths). If no id paths are specified (only targets), then all the

testscript tests are run (with the targets to be tested limited to the specified targets). An id path

without a target applies to all the targets being considered.

A directory target without an explicit target type (for example, foo/) is treated specially. It

enables all the tests at and under its directory. This special treatment can be inhibited by specify

ing the target type explicitly (for example, dir{foo/}).

4 Version Module

A project can use any version format as long as it meets the package version requirements. The

toolchain also provides additional functionality for managing projects that conform to the

build2 standard version format. If you are starting a new project that uses build2, you are

strongly encouraged to use this versioning scheme. It is based on much thought and, often

painful, experience. If you decide not to follow this advice, you are essentially on your own when

version management is concerned.

The standard build2 project version conforms to Semantic Versioning and has the following

form:

<major>.<minor>.<patch>[-<prerel>]

For example:

1.2.3

1.2.3-a.1

1.2.3-b.2

5Revision 0.7, May 2018 The build2 Build System

4 Version Module

http://semver.org/

The build2 package version that uses the standard project version will then have the following

form (epoch is the versioning scheme version and revision is the package revision):

[+<epoch>-]<major>.<minor>.<patch>[-<prerel>][+<revision>]

For example:

1.2.3

1.2.3+1

+1-1.2.3-a.1+2

The major, minor, and patch should be numeric values between 0 and 999 and all three cannot

be zero at the same time. For initial development it is recommended to use 0 for major, start with

version 0.1.0, and change to 1.0.0 once things stabilize.

In the context of C and C++ (or other compiled languages), you should increment patch when

making binary-compatible changes, minor when making source-compatible changes, and major

when making breaking changes. While the binary compatibility must be set in stone, the source

compatibility rules can sometimes be bent. For example, you may decide to make a breaking

change in a rarely used interface as part of a minor release (though this is probably still a bad idea

if your library is widely depended upon). Note also that in the context of C++ deciding whether a

change is binary-compatible is a non-trivial task. There are resources that list the rules but no

automated tooling yet. If unsure, increment minor.

If present, the prerel component signifies a pre-release. Two types of pre-releases are supported

by the standard versioning scheme: final and snapshot (non-pre-release versions are naturally

always final). For final pre-releases the prerel component has the following form:

(a|b).<num>

For example:

1.2.3-a.1

1.2.3-b.2

The letter ’a’ signifies an alpha release and ’b’ – beta. The alpha/beta numbers (num) should be

between 1 and 499.

Note that there is no support for release candidates. Instead, it is recommended that you use

later-stage beta releases for this purpose (and, if you wish, call them "release candidates" in

announcements, etc).

What version should be used during development? The common approach is to increment to the

next version and use that until the release. This has one major drawback: if we publish intermedi

ate snapshots (for example, for testing) they will all be indistinguishable both between each other

and, even worse, from the final release. One way to remedy this is to increment the pre-release

Revision 0.7, May 20186 The build2 Build System

4 Version Module

number before each publication. However, unless automated, this will be burdensome and

error-prone. Also, there is a real possibility of running out of version numbers if, for example, we

do continuous integration by publishing and testing each commit.

To address this, the standard versioning scheme supports snapshot pre-releases with the prerel

component having the following extended form:

(a|b).<num>.<snapsn>[.<snapid>]

For example:

1.2.3-a.1.20180319215815.26efe301f4a7

In essence, a snapshot pre-release is after the previous final release but before the next (a.1 and,

perhaps, a.2 in the above example) and is uniquely identified by the snapshot sequence number

(snapsn) and optional snapshot id (snapid).

The num component has the same semantics as in the final pre-releases except that it can be 0.

The snapsn component should be either the special value ’z’ or a numeric, non-zero value that

increases for each subsequent snapshot. It must not be longer than 16 decimal digits. The snapid

component, if present, should be an alpha-numeric value that uniquely identifies the snapshot. It

is not required for version comparison (snapsn should be sufficient) and is included for reference.

It must not be longer than 16 characters.

Where do the snapshot number and id come from? Normally from the version control system. For

example, for git, snapsn is the commit date in the YYYYMMDDhhmmss form and UTC time

zone and snapid is a 12-character abbreviated commit id. As discussed below, the build2

version module extracts and manages all this information automatically (but the use of git

commit dates is not without limitations; see below for details).

The special ’z’ snapsn value identifies the latest or uncommitted snapshot. It is chosen to be

greater than any other possible snapsn value and its use is discussed further below.

As an illustration of this approach, let’s examine how versions change during the lifetime of a

project:

0.1.0-a.0.z # development after a.0

0.1.0-a.1 # pre-release

0.1.0-a.1.z # development after a.1

0.1.0-a.2 # pre-release

0.1.0-a.2.z # development after a.2

0.1.0-b.1 # pre-release

0.1.0-b.1.z # development after b.1

0.1.0 # release

0.1.1-b.0.z # development after b.0 (bugfix)

7Revision 0.7, May 2018 The build2 Build System

4 Version Module

0.2.0-a.0.z # development after a.0

0.1.1 # release (bugfix)

1.0.0 # release (jumped straight to 1.0.0)

...

As shown in the above example, there is nothing wrong with "jumping" to a further version (for

example, from alpha to beta, or from beta to release, or even from alpha to release). We cannot,

however, jump backwards (for example, from beta back to alpha). As a result, a sensible strategy

is to start with a.0 since it can always be upgraded (but not downgrade) at a later stage.

When it comes to the version control systems, the recommended workflow is as follows: The

change to the final version should be the last commit in the (pre-)release. It is also a good idea to

tag this commit with the project version. A commit immediately after that should change the

version to a snapshot, "opening" the repository for development.

The project version without the snapshot part can be represented as a 64-bit decimal value

comparable as integers (for example, in preprocessor directives). The integer representation has

the following form:

AAABBBCCCDDDE

AAA - major

BBB - minor

CCC - patch

DDD - alpha / beta (DDD + 500)

E - final (0) / snapshot (1)

If the DDDE value is not zero, then it signifies a pre-release. In this case one is subtracted from

the AAABBBCCC value. An alpha number is stored in DDD as is while beta – incremented by

500. If E is 1, then this is a snapshot after DDD.

For example:

 AAABBBCCCDDDE

0.1.0 0000010000000

0.1.2 0000010010000

1.2.3 0010020030000

2.2.0-a.1 0020019990010

3.0.0-b.2 0029999995020

2.2.0-a.1.z 0020019990011

A project that uses standard versioning can rely on the build2 version module to simplify

and automate version managements. The version module has two primary functions: eliminate

the need to change the version anywhere except in the project’s manifest file and automatically

extract and propagate the snapshot information (serial number and id).

Revision 0.7, May 20188 The build2 Build System

4 Version Module

The version module must be loaded in the project’s bootstrap.build. While being

loaded, it reads the project’s manifest and extracts its version (which must be in the standard

form). The version is then parsed and presented as the following build system variables (which

can be used in the buildfiles):

[string] version # +2-1.2.3-b.4.1234567.deadbeef+3

[string] version.project # 1.2.3-b.4.1234567.deadbeef

[uint64] version.project_number # 0010020025041

[string] version.project_id # 1.2.3-b.4.deadbeef

[bool] version.stub # false (true for 0[+<revision>])

[uint64] version.epoch # 2

[uint64] version.major # 1

[uint64] version.minor # 2

[uint64] version.patch # 3

[bool] version.alpha # false

[bool] version.beta # true

[bool] version.pre_release # true

[string] version.pre_release_string # b.4

[uint64] version.pre_release_number # 4

[bool] version.snapshot # true

[uint64] version.snapshot_sn # 1234567

[string] version.snapshot_id # deadbeef

[string] version.snapshot_string # 1234567.deadbeef

[bool] version.snapshot_committed # true

[uint64] version.revision # 3

As a convenience, the version module also extract the summary and url manifest values and

sets them as the following build system variables (this additional information is used, for

example, when generating the pkg-config files):

[string] project.summary

[string] project.url

If the version is the latest snapshot (that is, it’s in the .z form), then the version module

extracts the snapshot information from the version control system used by the project. Currently

only git is supported with the following semantics.

If the project’s source directory (src_root) is clean (that is, it does not have any changed or

untracked files), then the HEAD commit date and id are used as the snapshot number and id,

respectively.

Otherwise (that is, the project is between commits), the HEAD commit date is incremented by one

second and is used as the snapshot number with no id. While we can work with such uncommit

ted snapshots locally, we should not distribute or publish them since they are indistinguishable

9Revision 0.7, May 2018 The build2 Build System

4 Version Module

from each other.

Finally, if the project does not have HEAD (that is, the project has no commits yet), the special

19700101000000 (UNIX epoch) commit date is used.

The use of git commit dates for snapshot ordering has its limitations: they have one second

resolution which means it is possible to create two commits with the same date (but not the same

commit id and thus snapshot id). We also need all the committers to have a reasonably accurate

clock. Note, however, that in case of a commit date clash/ordering issue, we still end up with

distinct versions (because of the commit id) – they are just not ordered correctly. As a result, we

feel that the risks are justified when the only alternative is manual version management (which is

always an option, nevertheless).

When we prepare a distribution of a snapshot, the version module automatically adjusts the

package name to include the snapshot information as well as patches the manifest file in the

distribution with the snapshot number and id (that is, replacing .z in the version value with the

actual snapshot information). The result is a package that is specific to this commit.

Besides extracting the version information and making it available as individual components, the

version module also provide rules for installing the manifest file as well as automatically

generating version headers (or other similar version-based files).

By default the project’s manifest file is installed as documentation, just like other doc{}

targets (thus replacing the version file customarily shipped in the project root directory). The

manifest installation rule in the version module in addition patches the installed manifest file

with the actual snapshot number and id, just like during the preparation of distributions.

The version header rule pre-processes a template file (which means it can be used to generate any

kinds of files, not just C/C++ headers). It matches a file-based target that has a corresponding

in prerequisite and also depends on the project’s manifest file. As an example, let’s assume

we want to auto-generate a header called version.hxx for our libhello library. To acom

plish this we add the version.hxx.in template as well as something along these lines to our

buildfile:

lib{hello}: ... hxx{version}

hxx{version}: in{version} $src_root/file{manifest}

hxx{version}: dist = true

The header rule is a line-based pre-processor that substitutes fragments enclosed between (and

including) a pair of dollar signs ($) with $$ being the escape sequence. As an example, let’s

assume our version.hxx.in contains the following lines:

Revision 0.7, May 201810 The build2 Build System

4 Version Module

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL

#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#endif

If our libhello is at version 1.2.3, then the generated version.hxx will look like this:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 10020030000ULL

#define LIBHELLO_VERSION_STR "1.2.3"

#endif

The first component after the opening $ should be either the name of the project itself (like

libhello above) or a name of one of its dependencies as listed in the manifest. If it is the

project itself, then the rest can refer to one of the version.* variables that we discussed earlier

(in reality it can be any variable visible from the project’s root scope).

If the name refers to one of the dependecies (that is, projects listed with depends: in the mani

fest), then the following special substitutions are recognized:

$<name>.version$ - textual version constraint

$<name>.condition(<VERSION>[,<SNAPSHOT>])$ - numeric satisfaction condition

$<name>.check(<VERSION>[,<SNAPSHOT>])$ - numeric satisfaction check

Here VERSION is the version number macro and the optional SNAPSHOT is the snapshot number

macro. The snapshot is only required if you plan to include snapshot information in your depen

dency constraints.

As an example, let’s assume our libhello depends on libprint which is reflected with the

following line in our manifest:

depends: libprint >= 2.3.4

We also assume that libprint provides its version information in the

libprint/version.hxx header and uses analogous-named macros. Here is how we can add

a version check to our version.hxx.in:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION $libhello.version.project_number$ULL

#define LIBHELLO_VERSION_STR "$libhello.version.project$"

#include <libprint/version.hxx>

$libprint.check(LIBPRINT_VERSION)$

#endif

11Revision 0.7, May 2018 The build2 Build System

4 Version Module

After the substitution our version.hxx header will look like this:

#ifndef LIBHELLO_VERSION

#define LIBHELLO_VERSION 10020030000ULL

#define LIBHELLO_VERSION_STR "1.2.3"

#include <libprint/version.hxx>

#ifdef LIBPRINT_VERSION

if !(LIBPRINT_VERSION >= 20030040000ULL)

error incompatible libprint version, libprint >= 2.3.4 is required

endif

#endif

#endif

The version and condition substitutions are the building blocks of the check substitution.

For example, here is how we can implement a check with a customized error message:

#if !($libprint.condition(LIBPRINT_VERSION)$)

error bad libprint, need libprint $libprint.version$

#endif

The version module also treats one dependency in a special way: if you specify the required

version of the build system in your manifest, then the module will automatically check it for you.

For example, if we have the following line in our manifest:

depends: * build2 >= 0.5.0

And someone tries to build our project with build2 0.4.0, then they will see an error like this:

build/bootstrap.build:3:1: error: incompatible build2 version

 info: running 0.4.0

 info: required 0.5.0

What version constraints should be use when depending on other project. We start with a simple

case where we depend on a release. Let’s say libprint 2.3.0 added a feature that we need in

our libhello. If libprint follows the source/binary compatibility guidelines discussed

above, then any 2.X.Y version should work provided X >= 3. And this how we can specify it

in the manifest:

depends: libprint ^2.3.0

Let’s say we are now working on libhello 2.0.0 and would like to start using features from

libprint 3.0.0. However, currently, only pre-releases of 3.0.0 are available. If you would

like to add a dependency on a pre-release (most likely from your own pre-release), then the

recommendation is to only allow a specific version, essentially "expiring" the combination as

soon as newer versions become available. For example:

Revision 0.7, May 201812 The build2 Build System

4 Version Module

version: 2.0.0-b.1

depends: libprint == 3.0.0-b.2

Finally, let’s assume we are feeling adventerous and would like to test development snapshots of

libprint (most likey from our own snapshots). In this case the recommendation is to only

allow a snapshot range for a specific pre-release with the understanding and a warning that no

compatibility between snapshot versions is guaranteed. For example:

version: 2.0.0-b.1.z

depends: libprint [3.0.0-b.2.1 3.0.0-b.3)

5 cxx (C++) Module

This chapter describes the cxx build system module which provides the C++ compilation and

linking support. Most of its functionality, however, is provided by the cc module, a common

implementation for the C-family languages.

5.1 C++ Modules Support

This section describes the build system support for C++ modules.

5.1.1 Modules Introduction

The goal of this section is to provide a practical introduction to C++ Modules and to establish key

concepts and terminology.

A pre-modules C++ program or library consists of one or more translation units which are

customarily referred to as C++ source files. Translation units are compiled to object files which

are then linked together to form a program or library.

Let’s also recap the difference between an external name and a symbol: External names refer to

language entities, for example classes, functions, and so on. The external qualifier means they are

visible across translation units.

Symbols are derived from external names for use inside object files. They are the cross-referenc

ing mechanism for linking a program from multiple, separately-compiled translation units. Not all

external names end up becoming symbols and symbols are often decorated with additional infor

mation, for example, a namespace. We often talk about a symbol having to be satisfied by linking

an object file or a library that provides it. Similarly, duplicate symbol issues may arise if more

than one object file or library provides the same symbol.

What is a C++ module? It is hard to give a single but intuitive answer to this question. So we will

try to answer it from three different perspectives: that of a module consumer, a module producer,

and a build system that tries to make those two play nice. But we can make one thing clear at the

13Revision 0.7, May 2018 The build2 Build System

5 cxx (C++) Module

outset: modules are a language-level not a preprocessor-level mechanism; it is import, not

#import.

One may also wonder why C++ modules, what are the benefits? Modules offer isolation, both

from preprocessor macros and other modules’ symbols. Unlike headers, modules require explicit

exportation of entities that will be visible to the consumers. In this sense they are a physical

design mechanism that forces us to think how we structure our code. Modules promise significant

build speedups since importing a module, unlike including a header, should be essentially free.

Modules are also the first step to not needing the preprocessor in most translation units. Finally,

modules have a chance of bringing to mainstream reliable and easy to setup distributed C++

compilation, since with modules build systems can make sure compilers on the local and remote

hosts are provided with identical inputs.

To refer to a module we use a module name, a sequence of dot-separated identifiers, for example

hello.core. While the specification does not assign any hierarchical semantics to this

sequence, it is customary to refer to hello.core as a submodule of hello. We discuss

submodules and provide the module naming guidelines below.

From a consumer’s perspective, a module is a collection of external names, called module inter

face, that become visible once the module is imported:

import hello.core

What exactly does visible mean? To quote the standard: An import-declaration makes exported

declarations [...] visible to name lookup in the current translation unit, in the same namespaces

and contexts [...]. [Note: The entities are not redeclared in the translation unit containing the

module import declaration. -- end note] One intuitive way to think about this visibility is as if

there were only a single translation unit for the entire program that contained all the modules as

well as all their consumers. In such a translation unit all the names would be visible to everyone

in exactly the same way and no entity would be redeclared.

This visibility semantics suggests that modules are not a name scoping mechanism and are

orthogonal to namespaces. Specifically, a module can export names from any number of names

paces, including the global namespace. While the module name and its namespace names need

not be related, it usually makes sense to have a parallel naming scheme, as discussed below.

Finally, the import declaration does not imply any additional visibility for names declared

inside namespaces. Specifically, to access such names we must continue using the standard mech

anisms, such as qualification or using declaration/directive. For example:

import hello.core; // Exports hello::say().

say (); // Error.

hello::say (); // Ok.

using namespace hello;

say (); // Ok.

Revision 0.7, May 201814 The build2 Build System

5.1.1 Modules Introduction

Note also that from the consumer’s perspective a module does not provide any symbols, only

C++ entity names. If we use names from a module, then we may have to satisfy the correspond

ing symbols using the usual mechanisms: link an object file or a library that provides them. In

this respect, modules are similar to headers and as with headers, module’s use is not limited to

libraries; they make perfect sense when structuring programs. Furthermore, a library may also

have private or implementation modules that are not meant to be consumed by the library’s users.

The producer perspective on modules is predictably more complex. In pre-modules C++ we only

had one kind of translation unit (or source file). With modules there are three kinds: module inter

face unit, module implementation unit, and the original kind which we will call a non-module

translation unit.

From the producer’s perspective, a module is a collection of module translation units: one inter

face unit and zero or more implementation units. A simple module may consist of just the inter

face unit that includes implementations of all its functions (not necessarily inline). A more

complex module may span multiple implementation units.

A translation unit is a module interface unit if it contains an exporting module declaration:

export module hello.core;

A translation unit is a module implementation unit if it contains a non-exporting module declara

tion:

module hello.core;

While module interface units may use the same file extension as normal source files, we recom

mend that a different extension be used to distinguish them as such, similar to header files. While

the compiler vendors suggest various (and predictably different) extensions, our recommendation

is .mxx for the .hxx/.cxx source file naming and .mpp for .hpp/.cpp. And if you are

using some other naming scheme, then perhaps now is a good opportunity to switch to one of the

above. Continuing using the source file extension for module implementation units appears

reasonable and that’s what we recommend.

A module declaration (exporting or non-exporting) starts a module purview that extends until the

end of the module translation unit. Any name declared in a module’s purview belongs to said

module. For example:

#include <string> // Not in purview.

export module hello.core; // Start of purview.

void

say_hello (const std::string&); // In purview.

15Revision 0.7, May 2018 The build2 Build System

5.1.1 Modules Introduction

A name that belongs to a module is invisible to the module’s consumers unless it is exported. A

name can be declared exported only in a module interface unit, only in the module’s purview, and

there are several syntactic ways to accomplish this. We can start the declaration with the export

specifier, for example:

export module hello.core;

export enum class volume {quiet, normal, loud};

export void

say_hello (const char*, volume);

Alternatively, we can enclose one or more declarations into an exported group, for example:

export module hello.core;

export

{

 enum class volume {quiet, normal, loud};

 void

 say_hello (const char*, volume);

}

Finally, if a namespace definition is declared exported, then every name in its body is exported,

for example:

export module hello.core;

export namespace hello

{

 enum class volume {quiet, normal, loud};

 void

 say (const char*, volume);

}

namespace hello

{

 void

 impl (const char*, volume); // Not exported.

}

Up until now we’ve only been talking about names belonding to a module. What about the corre

sponding symbols? For exported names, the resulting symbols would be the same as if those

names were declared outside of a module’s purview (or as if no modules were used at all).

Non-exported names, on the other hand, have module linkage: their symbols can be resolved from

this module’s units but not from other translation units. They also cannot clash with symbols for

identical names from other modules (and non-modules). This is usually achieved by decorating

the non-exported symbols with the module name.

Revision 0.7, May 201816 The build2 Build System

5.1.1 Modules Introduction

This ownership model has an important backwards compatibility implication: a library built with

modules enabled can be linked to a program that still uses headers. And even the other way

around: we can build and use a module for a library that was built with headers.

What about the preprocessor? Modules do not export preprocessor macros, only C++ names. A

macro defined in the module interface unit cannot affect the module’s consumers. And macros

defined by the module’s consumers cannot affect the module interface they are importing. In

other words, module producers and consumers are isolated from each other when the preproces

sor is concerned. For example, consider this module interface:

export module hello;

#ifndef SMALL

#define HELLO

export void say_hello (const char*);

#endif

And its consumer:

// module consumer

//

#define SMALL // No effect.

import hello;

#ifdef HELLO // Not defined.

...

#endif

This is not to say that the preprocessor cannot be used by either, it just doesn’t "leak" through the

module interface. One practical implication of this model is the insignificance of the import

order.

If a module imports another module in its purview, the imported module’s names are not made

automatically visible to the consumers of the importing module. This is unlike headers and can be

surprising. Consider this module interface as an example:

export module hello;

import std.core;

export void

say_hello (const std::string&);

And its consumer:

17Revision 0.7, May 2018 The build2 Build System

5.1.1 Modules Introduction

import hello;

int

main ()

{

 say_hello ("World");

}

This example will result in a compile error and the diagnostics may confusingly indicate that

there is no known conversion from a C string to "something" called std::string. But with

the understanding of the difference between import and #include the reason should be clear:

while the module interface "sees" std::string (because it imported its module), we (the

consumer) do not (since we did not). So the fix is to explicitly import std.core:

import std.core;

import hello;

int

main ()

{

 say_hello ("World");

}

A module, however, can choose to re-export a module it imports. In this case, all the names from

the imported module will also be visible to the importing module’s consumers. For example, with

this change to the module interface the first version of our consumer will compile without errors

(note that whether this is a good design choice is debatable, as discussed below):

export module hello;

export import std.core;

export void

say_hello (const std::string&);

One way to think of a re-export is as if an import of a module also "injects" all the imports said

module re-exports, recursively. That’s essentially how most compilers implement it.

Module re-export is the mechanism for assembling bigger modules out of submodules. As an

example, let’s say we had the hello.core, hello.basic, and hello.extra modules. To

make life easier for users that want to import all of them we can create the hello module that

re-exports the three:

export module hello;

export

{

 import hello.core;

 import hello.basic;

 import hello.extra;

}

Revision 0.7, May 201818 The build2 Build System

5.1.1 Modules Introduction

Besides starting a module purview, a non-exporting module declaration in the implementation

unit makes non-internal linkage names declared or made visible in the interface purview also

visible in the implementation purview. In this sense non-exporting module declaration acts as an

extended import. For example:

import hello.impl; // Not visible (exports impl()).

void

extra_impl (); // Not visible.

export module hello.extra; // Start of interface purview.

import hello.core; // Visible (exports core()).

void

extra (); // Visible.

static void

extra2 (); // Not visible (internal linkage).

And this is the implementation unit:

module hello.extra; // Start of implementation purview.

void

f ()

{

 impl (); // Error.

 extra_impl (); // Error.

 core (); // Ok.

 extra (); // Ok.

 extra2 (); // Error.

}

In particular, this means that while the relative order of imports is not significant, the placement

of imports in the module interface unit relative to the module declaration can be.

The final perspective that we consider is that of the build system. From its point of view the

central piece of the module infrastructure is the binary module interface: a binary file that is

produced by compiling the module interface unit and that is required when compiling any transla

tion unit that imports this module as well as the module’s implementation units.

Then, in a nutshell, the main functionality of a build system when it comes to modules support is

figuring out the order in which all the translation units should be compiled and making sure that

every compilation process is able to find the binary module interfaces it needs.

Predictably, the details are more complex. Compiling a module interface unit produces two

outputs: the binary module interface and the object file. The latter contains object code for

non-inline functions, global variables, etc., that the interface unit may define. This object file has

to be linked when producing any binary (program or library) that uses this module.

19Revision 0.7, May 2018 The build2 Build System

5.1.1 Modules Introduction

Also, all the compilers currently implement module re-export as a shallow reference to the

re-exported module name which means that their binary interfaces must be discoverable as well,

recursively. In fact, currently, all the imports are handled like this, though a different implementa

tion is at least plausible, if unlikely.

While the details vary between compilers, the contents of the binary module interface can range

from a stream of preprocessed tokens to something fairly close to object code. As a result, binary

interfaces can be sensitive to the compiler options and if the options used to produce the binary

interface (for example, when building a library) are sufficiently different compared to the ones

used when compiling the module consumers, the binary interface may be unusable. So while a

build system should strive to reuse existing binary interfaces, it should also be prepared to

compile its own versions "on the side".

This also suggests that binary module interfaces are not a distribution mechanism and should

probably not be installed. Instead, we should install and distribute module interface sources and

build systems should be prepared to compile them, again, on the side.

5.1.2 Building Modules

Compiler support for C++ Modules is still experimental. As a result, it is currently only enabled if

the C++ standard is set to experimental. After loading the cxx module we can check if

modules are enabled using the cxx.features.modules boolean variable. This is what the

relevant root.build fragment could look like for a modularized project:

cxx.std = experimental

using cxx

assert $cxx.features.modules ’compiler does not support modules’

mxx{*}: extension = mxx

cxx{*}: extension = cxx

To support C++ modules the cxx module (build system) defines several additional target types.

The mxx{} target is a module interface unit. As you can see from the above root.build frag

ment, in this project we are using the .mxx extension for our module interface files. While you

can use the same extension as for cxx{} (source files), this is not recommended since some

functionality, such as wildcard patterns, will become unusable.

The bmi{} group and its bmie{}, bmia{}, and bmis{} members are used to represent binary

module interfaces targets. We normally do not need to mention them explicitly in our buildfiles

except, perhaps, to specify additional, module interface-specific compile options. We will see

some examples of this below.

Revision 0.7, May 201820 The build2 Build System

5.1.2 Building Modules

To build a modularized executable or library we simply list the module interfaces as its prerequi

sites, just as we do for source files. As an example, let’s build the hello program that we have

started in the introduction (you can find the complete project in the Hello Repository under

mhello). Specifically, we assume our project contains the following files:

// file: hello.mxx (module interface)

export module hello;

import std.core;

export void

say_hello (const std::string&);

// file: hello.cxx (module implementation)

module hello;

import std.io;

using namespace std;

void

say_hello (const string& name)

{

 cout << "Hello, " << name << ’!’ << endl;

}

// file: driver.cxx

import std.core;

import hello;

int

main ()

{

 say_hello ("World");

}

To build a hello executable from these files we can write the following buildfile:

exe{hello}: cxx{driver} {mxx cxx}{hello}

Or, if you prefer to use wildcard patterns:

exe{hello}: {mxx cxx}{*}

Alternatively, we can package the module into a library and then link the library to the

executable:

21Revision 0.7, May 2018 The build2 Build System

5.1.2 Building Modules

https://build2.org/pkg/hello

exe{hello}: cxx{driver} lib{hello}

lib{hello}: {mxx cxx}{hello}

As you might have surmised from this example, the modules support in build2 automatically

resolves imports to module interface units that are specified either as direct prerequisites or as

prerequisites of library prerequisites.

To perform this resolution without a significant overhead, the implementation delays the extrac

tion of the actual module name from module interface units (since not all available module inter

faces are necessarily imported by all the translation units). Instead, the implementation tries to

guess which interface unit implements each module being imported based on the interface file

path. Or, more precisely, a two-step resolution process is performed: first a best match between

the desired module name and the file path is sought and then the actual module name is extracted

and the correctness of the initial guess is verified.

The practical implication of this implementation detail is that our module interface files must

embed a portion of a module name, or, more precisely, a sufficient amount of "module name tail"

to unambiguously resolve all the modules used in a project. Note also that this guesswork is only

performed for direct module interface prerequisites; for those that come from libraries the module

names are known and are therefore matched exactly.

As an example, let’s assume our hello project had two modules: hello.core and

hello.extra. While we could call our interface files hello.core.mxx and

hello.extra.mxx, respectively, this doesn’t look particularly good and may be contrary to

the file naming scheme used in our project. To resolve this issue the match of module names to

file names is made "fuzzy": it is case-insensitive, it treats all separators (dots, dashes, under

scores, etc) as equal, and it treats a case change as an imaginary separator. As a result, the follow

ing naming schemes will all match the hello.core module name:

hello-core.mxx

hello_core.mxx

HelloCore.mxx

hello/core.mxx

We also don’t have to embed the full module name. In our case, for example, it would be most

natural to call the files core.mxx and extra.mxx since they are already in the project direc

tory called hello/. This will work since our module names can still be guessed correctly and

unambiguously.

If a guess turns out to be incorrect, the implementation issues diagnostics and exits with an error

before attempting to build anything. To resolve this situation we can either adjust the interface

file names or we can specify the module name explicitly with the cxx.module_name variable.

The latter approach can be used with interface file names that have nothing in common with

module names, for example:

Revision 0.7, May 201822 The build2 Build System

5.1.2 Building Modules

mxx{foobar}@./: cxx.module_name = hello

Note also that standard library modules (std and std.*) are treated specially: they are not

fuzzy-matched and they need not be resolvable to the corresponding mxx{} or bmi{} in which

case it is assumed they will be resolved in an ad hoc way by the compiler. This means that if you

want to build your own standard library module (for example, because your compiler doesn’t yet

ship one; note that this may not be supported by all compilers), then you have to specify the

module name explicitly. For example:

exe{hello}: cxx{driver} {mxx cxx}{hello} mxx{std-core}

mxx{std-core}@./: cxx.module_name = std.core

When C++ modules are enabled and available, the build system makes sure the

__cpp_modules feature test macro is defined. Currently, its value is 201703 for VC and

201704 for GCC and Clang but this will most likely change in the future.

One major difference between the current C++ modules implementation in VC and the other two

compilers is the use of the export module syntax to identify the interface units. While both

GCC and Clang have adopted this new syntax, VC is still using the old one without the export

keyword. We can use the __cpp_modules macro to provide a portable declaration:

#if __cpp_modules >= 201704

export

#endif

module hello;

Note, however, that the modules support in build2 provides temporary "magic" that allows us

to use the new syntax even with VC (don’t ask how).

5.1.3 Module Symbols Exporting

When building a shared library, some platforms (notably Windows) require that we explicitly

export symbols that must be accessible to the library users. If you don’t need to support such plat

forms, you can thank your lucky stars and skip this section.

When using headers, the traditional way of achieving this is via an "export macro" that is used to

mark exported APIs, for example:

LIBHELLO_EXPORT void

say_hello (const string&);

This macro is then appropriately defined (often in a separate "export header") to export symbols

when building the shared library and to import them when building the library’s users.

23Revision 0.7, May 2018 The build2 Build System

5.1.3 Module Symbols Exporting

The introduction of modules changes this in a number of ways, at least as implemented by VC

(hopefully other compilers will follow suit). While we still have to explicitly mark exported

symbols in our module interface unit, there is no need (and, in fact, no way) to do the same when

said module is imported. Instead, the compiler automatically treats all such explicitly exported

symbols (note: symbols, not names) as imported.

One notable aspect of this new model is the locality of the export macro: it is only defined when

compiling the module interface unit and is not visible to the consumers of the module. This is

unlike headers where the macro has to have a unique per-library name (that LIBHELLO_ prefix)

because a header from one library can be included while building another library.

We can continue using the same export macro and header with modules and, in fact, that’s the

recommended approach when maintaining the dual, header/module arrangement for backwards

compatibility (discussed below). However, for modules-only codebases, we have an opportunity

to improve the situation in two ways: we can use a single, keyword-like macro instead of a

library-specific one and we can make the build system manage it for us thus getting rid of the

export header.

To enable this functionality in build2 we set the cxx.features.symexport boolean vari

able to true before loading the cxx module. For example:

cxx.std = experimental

cxx.features.symexport = true

using cxx

...

Once enabled, build2 automatically defines the __symexport macro to the appropriate value

depending on the platform and the type of library being built. As library authors, all we have to

do is use it in appropriate places in our module interface units, for example:

export module hello;

import std.core;

export __symexport void

say_hello (const std::string&);

As an aside, you may be wondering why can’t a module export automatically mean a symbol

export? While you will normally want to export symbols of all your module-exported names, you

may also need to do so for some non-module-exported ones. For example:

Revision 0.7, May 201824 The build2 Build System

5.1.3 Module Symbols Exporting

export module foo;

__symexport void

f_impl ();

export __symexport inline void

f ()

{

 f_impl ();

}

Furthermore, symbol exporting is a murky area with many limitations and pitfalls (such as

auto-exporting of base classes). As a result, it would not be unreasonable to expect such an auto

matic module exporting to only further muddy the matter.

5.1.4 Modules Installation

As discussed in the introduction, binary module interfaces are not a distribution mechanism and

installing module interface sources appears to be the preferred approach.

Module interface units are by default installed in the same location as headers (for example,

/usr/include). However, instead of relying on a header-like search mechanism (-I paths,

etc.), an explicit list of exported modules is provided for each library in its .pc (pkg-config)

file.

Specifically, the library’s .pc file contains the cxx_modules variable that lists all the exported

C++ modules in the <name>=<path> form with <name> being the module’s C++ name and

<path> – the module interface file’s absolute path. For example:

Name: libhello

Version: 1.0.0

Cflags:

Libs: -L/usr/lib -lhello

cxx_modules = hello.core=/usr/include/hello/core.mxx hello.extra=/usr/include/hello/extra.mxx

Additional module properties are specified with variables in the cxx_module_<prop

erty>.<name> form, for example:

cxx_module_symexport.hello.core = true

cxx_module_preprocessed.hello.core = all

Currently, two properties are defined. The symexport property with the boolean value signals

whether the module uses the __symexport support discussed above.

The preprocessed property indicates the degree of preprocessing the module unit requires

and is used to optimize module compilation. Valid values are none (not preprocessed),

includes (no #include directives in the source), modules (as above plus no module decla

rations depend on the preprocessor, for example, #ifdef, etc.), and all (the source is fully

25Revision 0.7, May 2018 The build2 Build System

5.1.4 Modules Installation

preprocessed). Note that for all the source may still contain comments and line continuations.

5.1.5 Modules Design Guidelines

Modules are a physical design mechanism for structuring and organizing our code. Their explicit

exportation semantics combined with the way they are built make many aspects of creating and

consuming modules significantly different compared to headers. This section provides basic

guidelines for designing modules. We start with the overall considerations such as module granu

larity and partitioning into translation units then continue with the structure of typical module

interface and implementation units. The following section discusses practical approaches to

modularizing existing code and providing dual, header/module interfaces for backwards-compati

bility.

Unlike headers, the cost of importing modules should be negligible. As a result, it may be tempt

ing to create "mega-modules", for example, one per library. After all, this is how the standard

library is modularized with its fairly large std.core and std.io modules.

There is, however, a significant drawback to this choice: every time we make a change, all

consumers of such a mega-module will have to be recompiled, whether the change affects them

or not. And the bigger the module the higher the chance that any given change does not (semanti

cally) affect a large portion of the module’s consumers. Note also that this is not an issue for the

standard library modules since they are not expected to change often.

Another, more subtle, issue with mega-modules (which does affect the standard library) is the

inability to re-export only specific interfaces, as will be discussed below.

The other extreme in choosing module granularity is a large number of "mini-modules". Their

main drawback is the tediousness of importation by the consumers.

The sensible approach is then to create modules of conceptually-related and commonly-used enti

ties possibly complemented with aggregate modules for ease of importation. This also happens to

be generally good design.

As an example, let’s consider an XML library that provides support for both parsing and serial

ization. Since it is common for applications to only use one of the functionalities, it makes sense

to provide the xml.parser and xml.serializer modules. While it is not too tedious to

import both, for convenience we could also provide the xml module that re-exports the two.

Once we are past selecting an appropriate granularity for our modules, the next question is how to

partition them into translation units. A module can consist of just the interface unit and, as

discussed above, such a unit can contain anything an implementation unit can, including

non-inline function definitions. Some may then view this as an opportunity to get rid of the

header/source separation and have everything in a single file.

Revision 0.7, May 201826 The build2 Build System

5.1.5 Modules Design Guidelines

There are a number of drawbacks with this approach: Every time we change anything in the

module interface unit, all its consumers have to be recompiled. If we keep everything in a single

file, then every time we change the implementation we trigger recompilations that would have

been avoided had the implementation been factored out into a separate unit. Note that a build

system in cooperation with the compiler could theoretically avoid such unnecessary recompila

tions: if the compiler produces identical binary interface files when the module interface is

unchanged, then the build system could detect this and skip recompiling the module’s consumers.

A related issue with single-file modules is the reduction in the build parallelization opportunities.

If the implementation is part of the interface unit, then the build system cannot start compiling the

module’s consumers until both the interface and the implementation are compiled. On the other

hand, had the implementation been split into a separate file, the build system could start compil

ing the module’s consumers (as well as the implementation unit) as soon as the module interface

is compiled.

Another issues with combining the interface with the implementation is the readability of the

interface which could be significantly reduced if littered with implementation details. We could

keep the interface separate by moving the implementation to the bottom of the interface file but

then we might as well move it into a separate file and avoid the unnecessary recompilations or

parallelization issues.

The sensible guideline is then to have a separate module implementation unit except perhaps for

modules with a simple implementation that is mostly inline/template. Note that more complex

modules may have several implementation units, however, based on our granularity guideline,

those should be rare.

Once we start writing our first real module the immediate question that normally comes up is

where to put #include directives and import declarations and in what order. To recap, a

module unit, both interface and implementation, is split into two parts: before the module declara

tion which obeys the usual or "old" translation unit rules and after the module declaration which

is the module purview. Inside the module purview all non-exported declarations have module

linkage which means their symbols are invisible to any other module (including the global

module). With this understanding, consider the following module interface:

export module hello;

#include <string>

Do you see the problem? We have included <string> in the module purview which means all

its names (as well as all the names in any headers it might include, recursively) are now declared

as having the hello module linkage. The result of doing this can range from silent code blot to

strange-looking unresolved symbols.

27Revision 0.7, May 2018 The build2 Build System

5.1.5 Modules Design Guidelines

The guideline this leads to should be clear: including a header in the module purview is almost

always a bad idea. There are, however, a few types of headers that may make sense to include in

the module purview. The first are headers that only define preprocessor macros, for example,

configuration or export headers. There are also cases where we do want the included declarations

to end up in the module purview. The most common example is inline/template function imple

mentations that have been factored out into separate files for code organization reasons. As an

example, consider the following module interface that uses an export header (which presumably

sets up symbols exporting macros) as well as an inline file:

#include <string>

export module hello;

#include <libhello/export.hxx>

export namespace hello

{

 ...

}

#include <libhello/hello.ixx>

A note on inline/template files: in header-based projects we could include additional headers in

those files, for example, if the included declarations are only needed in the implementation. For

the reasons just discussed, this does not work with modules and we have to move all the includes

into the interface file, before the module purview. On the other hand, with modules, it is safe to

use namespace-level using-directives (for example, using namespace std;) in

inline/template files (and, with care, even in the interface file).

What about imports, where should we import other modules? Again, to recap, unlike a header

inclusion, an import declaration only makes exported names visible without redeclaring them.

As result, in module implementation units, it doesn’t really matter where we place imports, in or

out of the module purview. There are, however, two differences when it comes to module inter

face units: only imports in the purview are visible to implementation units and we can only

re-export an imported module from the purview.

The guideline is then for interface units to import in the module purview unless there is a good

reason not to make the import visible to the implementation units. And for implementation units

to always import in the purview for consistency. For example:

#include <cassert>

export module hello;

import std.core;

#include <libhello/export.hxx>

export namespace hello

Revision 0.7, May 201828 The build2 Build System

5.1.5 Modules Design Guidelines

{

 ...

}

#include <libhello/hello.ixx>

By putting all these guidelines together we can then create a module interface unit template:

// Module interface unit.

<header includes>

export module <name>; // Start of module purview.

<module imports>

<special header includes> // Configuration, export, etc.

<module interface>

<inline/template includes>

As well as the module implementation unit template:

// Module implementation unit.

<header includes>

module <name>; // Start of module purview.

<extra module imports> // Only additional to interface.

<module implementation>

Let’s now discuss module naming. Module names are in a separate "name plane" and do not

collide with namespace, type, or function names. Also, as mentioned earlier, the standard does

not assign a hierarchical meaning to module names though it is customary to assume module

hello.core is a submodule of hello and importing the latter also imports the former.

It is important to choose good names for public modules (that is, modules packaged into libraries

and used by a wide range of consumers) since changing them later can be costly. We have more

leeway with naming private modules (that is, the ones used by programs or internal to libraries)

though it’s worth coming up with a consistent naming scheme here as well.

The general guideline is to start names of public modules with the library’s namespace name

followed by a name describing the module’s functionality. In particular, if a module is dedicated

to a single class (or, more generally, has a single primary entity), then it makes sense to use its

name as the module name’s last component.

29Revision 0.7, May 2018 The build2 Build System

5.1.5 Modules Design Guidelines

As a concrete example, consider libbutl (the build2 utility library): All its components are

in the butl namespace so all its module names start with butl. One of its components is the

small_vector class template which resides in its own module called

butl.small_vector. Another component is a collection of string parsing utilities that are

grouped into the butl::string_parser namespace with the corresponding module called

butl.string_parser.

When is it a good idea to re-export a module? The two straightforward cases are when we are

building an aggregate module out of submodules, for example, xml out of xml.parser and

xml.serializer, or when one module extends or supersedes another, for example, as

std.core extends std.fundamental. It is also clear that there is no need to re-export a

module that we only use in the implementation. The case when we use a module in our interface

is, however, a lot less clear cut.

But before considering the last case in more detail, let’s understand the issue with re-export. In

other words, why not simply re-export any module we import in our interface? In essence,

re-export implicitly injects another module import anywhere our module is imported. If we

re-export std.core then consumers of our module will also automatically "see" all the names

exported by std.core. They can then start using names from std without explicitly importing

std.core and everything will compile until one day they no longer need to import our module

or we no longer need to import std.core. In a sense, re-export becomes part of our interface

and it is generally good design to keep interfaces minimal.

And so, at the outset, the guideline is then to only re-export the minimum necessary. This, by the

way, is the reason why it may make sense to divide std.core into submodules such as

std.core.string, std.core.vector, etc.

Let’s now discuss a few concrete examples to get a sense of when re-export might or might not

be appropriate. Unfortunately, there does not seem to be a hard and fast rule and instead one has

to rely on their good sense of design.

To start, let’s consider a simple module that uses std::string in its interface:

export module hello;

import std.core;

export namespace hello

{

 void say (const std::string&);

}

Should we re-export std.core (or, std.core.string) in this case? Most likely not. If

consumers of our module want to use std::string in order to pass an argument to our func

tion, then it is natural to expect them to explicitly import the necessary module. In a sense, this is

analogous to scoping: nobody expects to be able to use just string (without std::) because of

Revision 0.7, May 201830 The build2 Build System

5.1.5 Modules Design Guidelines

using namespace hello;.

So it seems that a mere usage of a name in an interface does not generally warrant a re-export.

The fact that a consumer may not even use this part of our interface further supports this conclu

sion.

Let’s now consider a more interesting case (inspired by real events):

export module small_vector;

import std.core;

template <typename T, std::size_t N>

export class small_vector: public std::vector<T, ...>

{

 ...

};

Here we have the small_vector container implemented in terms of std::vector by

providing a custom allocator and with most of the functions derived as is. Consider now this

innocent-looking consumer code:

import small_vector;

small_vector<int, 1> a, b;

if (a == b) // Error.

 ...

We don’t reference std::vector directly so presumably we shouldn’t need to import its

module. However, the comparison won’t compile: our small_vector implementation re-uses

the comparison operators provided by std::vector (via implicit to-base conversion) but they

aren’t visible.

There is a palpable difference between the two cases: the first merely uses std.core interface

while the second is based on and, in a sense, extends it which feels like a stronger relationship.

Re-exporting std.core (or, better yet, std.core.vector, should it become available) does

not seem unreasonable.

Note also that there is no re-export of headers nor header inclusion visibility in the implementa

tion units. Specifically, in the previous example, if the standard library is not modularized and we

have to use it via headers, then the consumers of our small_vector will always have to

explicitly include <vector>. This suggest that modularizing a codebase that still consumes

substantial components (like the standard library) via headers can incur some development over

head compared to the old, headers-only approach.

31Revision 0.7, May 2018 The build2 Build System

5.1.5 Modules Design Guidelines

5.1.6 Modularizing Existing Code

The aim of this section is to provide practical guidelines to modularizing existing codebases as

well as supporting the dual, header/module interface for backwards-compatibility.

Predictably, a well modularized (in the general sense) set of headers makes conversion to C++

modules easier. Inclusion cycles will be particularly hard to deal with (C++ modules do not allow

circular interface dependencies). Furthermore, as we will see below, if you plan to provide the

dual header/module interface, then having a one-to-one header to module mapping will simplify

this task. As a result, it may make sense to spend some time cleaning and re-organizing your

headers prior to attempting modularization.

Let’s first discuss why the modularization approach illustrated by the following example does not

generally work:

export module hello;

export

{

#include "hello.hxx"

}

There are several issue that usually make this unworkable. Firstly, the header we are trying to

export most likely includes other headers. For example, our hello.hxx may include

<string> and we have already discussed why including it in the module purview, let alone

exporting its names, is a bad idea. Secondly, the included header may declare more names than

what should be exported, for example, some implementation details. In fact, it may declare names

with internal linkage (uncommon for headers but not impossible) which are illegal to export.

Finally, the header may define macros which will no longer be visible to the consumers.

Sometimes, however, this can be the only approach available (for example, if trying to non-intru

sively modularize a third-party library). It is possible to work around the first issue by pre-includ

ing outside of the module purview headers that should not be exported. Here we rely on the fact

that the second inclusion of the same header will be ignored. For example:

#include <string> // Pre-include to suppress inclusion below.

export module hello;

export

{

#include "hello.hxx"

}

Needless to say this approach is very brittle and usually requires that you place all the

inter-related headers into a single module. As a result, its use is best limited to exploratory modu

larization and early prototyping.

Revision 0.7, May 201832 The build2 Build System

5.1.6 Modularizing Existing Code

When starting modularization of a codebase there are two decisions we have to make at the

outset: the level of the C++ modules support we can assume and the level of backwards compati

bility we need to provide.

The two modules support levels we distinguish are just modules and modules with the modular

ized standard library. The choice we have to make then is whether to support the standard library

only as headers, only as modules, or both. Note that some compiler/standard library combinations

may not be usable in some of these modes.

The possible backwards compatibility levels are modules-only (consumption via headers is no

longer supported), modules-or-headers (consumption either via headers or modules), and

modules-and-headers (as the previous case but with support for consuming a library built with

modules via headers and vice versa).

What kind of situations call for the last level? We may need to continue offering the library as

headers if we have a large number of existing consumers that cannot possibly be all modularized

at once (or even ever). So the situation we may end up in is a mixture of consumers trying to use

the same build of our library with some of them using modules and some – headers. The case

where we may want to consume a library built with headers via modules is not as far fetched as it

may seem: the library might have been built with an older version of the compiler (for example, it

was installed from a distribution’s package) while the consumer is being built with a compiler

version that supports modules. Note also that as discussed earlier the modules ownership seman

tics supports both kinds of such "cross-usage".

Generally, compiler implementations do not support mixing inclusion and importation of the

same entities in the same translation unit. This makes migration tricky if you plan to use the

modularized standard library because of its pervasive use. There are two plausible strategies to

handling this aspect of migration: If you are planning to consume the standard library exclusively

as modules, then it may make sense to first change your entire codebase to do that. Simply

replace all the standard library header inclusions with importation of the relevant std.*

modules.

The alternative strategy is to first complete the modularization of our entire project (as discussed

next) while continuing consuming the standard library as headers. Once this is done, we can

normally switch to using the modularized standard library quite easily. The reason for waiting

until the complete modularization is to eliminate header inclusions between components which

would often result in conflicting styles of the standard library consumption.

Note also that due to the lack of header re-export and include visibility support discussed earlier,

it may make perfect sense to only support the modularized standard library when modules are

enabled even when providing backwards compatibility with headers. In fact, if all the

compiler/standard library implementations that your project caters to support the modularized

standard library, then there is little sense not to impose such a restriction.

33Revision 0.7, May 2018 The build2 Build System

5.1.6 Modularizing Existing Code

The overall strategy for modularizing our own components is to identify and modularize

inter-dependent sets of headers one at a time starting from the lower-level components. This way

any newly modularized set will only depend on the already modularized ones. After converting

each set we can switch its consumers to using imports keeping our entire project buildable and

usable.

While ideally we would want to be able to modularize just a single component at a time, this does

not seem to work in practice because we will have to continue consuming some of the compo

nents as headers. Since such headers can only be imported out of the module purview, it becomes

hard to reason (both for us and often the compiler) what is imported/included and where. For

example, it’s not uncommon to end up importing the module in its implementation unit which is

not something that all the compilers can handle gracefully.

Let’s now explore how we can provide the various levels of backwards compatibility discussed

above. Here we rely on two feature test macros to determine the available modules support level:

__cpp_modules (modules are available) and __cpp_lib_modules (standard library

modules are available, assumes __cpp_modules is also defined).

If backwards compatibility is not necessary (the modules-only level), then we can use the module

interface and implementation unit templates presented earlier and follow the above guidelines. If

we continue consuming the standard library as headers, then we don’t need to change anything in

this area. If we only want to support the modularized standard library, then we simply replace the

standard library header inclusions with the corresponding module imports. If we want to support

both ways, then we can use the following templates. The module interface unit template:

// C includes, if any.

#ifndef __cpp_lib_modules

<std includes>

#endif

// Other includes, if any.

export module <name>;

#ifdef __cpp_lib_modules

<std imports>

#endif

<module interface>

The module implementation unit template:

// C includes, if any.

#ifndef __cpp_lib_modules

<std includes>

<extra std includes>

Revision 0.7, May 201834 The build2 Build System

5.1.6 Modularizing Existing Code

#endif

// Other includes, if any.

module <name>;

#ifdef __cpp_lib_modules

<extra std imports> // Only additional to interface.

#endif

<module implementation>

For example:

// hello.mxx (module interface)

#ifndef __cpp_lib_modules

#include <string>

#endif

export module hello;

#ifdef __cpp_lib_modules

import std.core;

#endif

export void say_hello (const std::string& name);

// hello.cxx (module implementation)

#ifndef __cpp_lib_modules

#include <string>

#include <iostream>

#endif

module hello;

#ifdef __cpp_lib_modules

import std.io;

#endif

using namespace std;

void say_hello (const string& n)

{

 cout << "Hello, " << n << ’!’ << endl;

}

If we need support for symbol exporting in this setup (that is, we are building a library and need

to support Windows), then we can use the __symexport mechanism discussed earlier, for

example:

35Revision 0.7, May 2018 The build2 Build System

5.1.6 Modularizing Existing Code

// hello.mxx (module interface)

...

export __symexport void say_hello (const std::string& name);

The consumer code in the modules-only setup is straightforward: they simply import the desired

modules.

To support consumption via headers when modules are unavailable (the modules-or-headers

level) we can use the following setup. Here we also support the dual header/modules consump

tion for the standard library (if this is not required, replace #ifndef __cpp_lib_modules

with #ifndef __cpp_modules and remove #ifdef __cpp_lib_modules). The

module interface unit template:

#ifndef __cpp_modules

#pragma once

#endif

// C includes, if any.

#ifndef __cpp_lib_modules

<std includes>

#endif

// Other includes, if any.

#ifdef __cpp_modules

export module <name>;

#ifdef __cpp_lib_modules

<std imports>

#endif

#endif

<module interface>

The module implementation unit template:

#ifndef __cpp_modules

#include <module interface file>

#endif

// C includes, if any.

#ifndef __cpp_lib_modules

<std includes>

<extra std includes>

#endif

// Other includes, if any

#ifdef __cpp_modules

Revision 0.7, May 201836 The build2 Build System

5.1.6 Modularizing Existing Code

module <name>;

#ifdef __cpp_lib_modules

<extra std imports> // Only additional to interface.

#endif

#endif

<module implementation>

Notice the need to repeat <std includes> in the implementation file due to the lack of

include visibility discussed above. This is necessary when modules are enabled but the standard

library is not modularized since in this case the implementation does not "see" any of the headers

included in the interface.

Besides these templates we will most likely also need an export header that appropriately defines

a module export macro depending on whether modules are used or not. This is also the place

where we can handle symbol exporting. For example, here is what it could look like for our

libhello library:

// export.hxx (module and symbol export)

#pragma once

#ifdef __cpp_modules

define LIBHELLO_MODEXPORT export

#else

define LIBHELLO_MODEXPORT

#endif

#if defined(LIBHELLO_SHARED_BUILD)

ifdef _WIN32

define LIBHELLO_SYMEXPORT __declspec(dllexport)

else

define LIBHELLO_SYMEXPORT

endif

#elif defined(LIBHELLO_SHARED)

ifdef _WIN32

define LIBHELLO_SYMEXPORT __declspec(dllimport)

else

define LIBHELLO_SYMEXPORT

endif

#else

define LIBHELLO_SYMEXPORT

#endif

And this is the module that uses it and provides the dual header/module support:

// hello.mxx (module interface)

#ifndef __cpp_modules

#pragma once

#endif

37Revision 0.7, May 2018 The build2 Build System

5.1.6 Modularizing Existing Code

#ifndef __cpp_lib_modules

#include <string>

#endif

#ifdef __cpp_modules

export module hello;

#ifdef __cpp_lib_modules

import std.core;

#endif

#endif

#include <libhello/export.hxx>

LIBHELLO_MODEXPORT namespace hello

{

 LIBHELLO_SYMEXPORT void say (const std::string& name);

}

// hello.cxx (module implementation)

#ifndef __cpp_modules

#include <libhello/hello.mxx>

#endif

#ifndef __cpp_lib_modules

#include <string>

#include <iostream>

#endif

#ifdef __cpp_modules

module hello;

#ifdef __cpp_lib_modules

import std.io;

#endif

#endif

using namespace std;

namespace hello

{

 void say (const string& n)

 {

 cout << "Hello, " << n << ’!’ << endl;

 }

}

The consumer code in the modules-or-headers setup has to use either inclusion or importation

depending on the modules support availability, for example:

Revision 0.7, May 201838 The build2 Build System

5.1.6 Modularizing Existing Code

#ifdef __cpp_modules

import hello;

#else

#include <libhello/hello.mxx>

#endif

Predictably, the final backwards compatibility level (modules-and-headers) is the most onerous

to support. Here existing consumers have to continue working with the modularized version of

our library which means we have to retain all the existing header files. We also cannot assume

that just because modules are available they are used (a consumer may still prefer headers), which

means we cannot rely on (only) the __cpp_modules and __cpp_lib_modules macros to

make the decisions.

One way to arrange this is to retain the headers and adjust them according to the

modules-or-headers template but with one important difference: instead of using the standard

module macros we use our custom ones (and we can also have unconditional #pragma once).

For example:

// hello.hxx (module header)

#pragma once

#ifndef LIBHELLO_LIB_MODULES

#include <string>

#endif

#ifdef LIBHELLO_MODULES

export module hello;

#ifdef LIBHELLO_LIB_MODULES

import std.core;

#endif

#endif

#include <libhello/export.hxx>

LIBHELLO_MODEXPORT namespace hello

{

 LIBHELLO_SYMEXPORT void say (const std::string& name);

}

Now if this header is included (for example, by an existing consumer) then none of the

LIBHELLO_*MODULES macros will be defined and the header will act as, well, a plain old

header. Note that we will also need to make the equivalent change in the export header.

We also provide the module interface files which appropriately define the two custom macros and

then simply includes the corresponding headers:

39Revision 0.7, May 2018 The build2 Build System

5.1.6 Modularizing Existing Code

// hello.mxx (module interface)

#ifdef __cpp_modules

#define LIBHELLO_MODULES

#endif

#ifdef __cpp_lib_modules

#define LIBHELLO_LIB_MODULES

#endif

#include <libhello/hello.hxx>

The module implementation unit can remain unchanged. In particular, we continue including

hello.mxx if modules support is unavailable. However, if you find the use of different macros

in the header and source files confusing, then instead it can be adjusted as follows (note also that

now we are including hello.hxx):

// hello.cxx (module implementation)

#ifdef __cpp_modules

#define LIBHELLO_MODULES

#endif

#ifdef __cpp_lib_modules

#define LIBHELLO_LIB_MODULES

#endif

#ifndef LIBHELLO_MODULES

#include <libhello/hello.hxx>

#endif

#ifndef LIBHELLO_LIB_MODULES

#include <string>

#include <iostream>

#endif

#ifdef LIBHELLO_MODULES

module hello;

#ifdef LIBHELLO_LIB_MODULES

import std.io;

#endif

#endif

...

In this case it may also make sense to factor the LIBHELLO_*MODULES macro definitions into

a common header.

In the modules-and-headers setup the existing consumers that would like to continue using

headers don’t require any changes. And for those that would like to use modules if available the

arrangement is the same as for the modules-or-headers compatibility level.

Revision 0.7, May 201840 The build2 Build System

5.1.6 Modularizing Existing Code

If our module needs to "export" macros then the recommended approach is to simply provide an

additional header that the consumer includes. While it might be tempting to also wrap the module

import into this header, some may prefer to explicitly import the module and include the header,

especially if the macros may not be needed by all consumers. This way we can also keep the

header macro-only which means it can be included freely, in or out of module purviews.

41Revision 0.7, May 2018 The build2 Build System

5.1.6 Modularizing Existing Code

	Preface
	1 Name Patterns
	2 Grammar
	3 Test Module
	4 Version Module
	5 cxx (C++) Module
	5.1 C++ Modules Support
	5.1.1 Modules Introduction
	5.1.2 Building Modules
	5.1.3 Module Symbols Exporting
	5.1.4 Modules Installation
	5.1.5 Modules Design Guidelines
	5.1.6 Modularizing Existing Code

