
The build2 Package Manager

Copyright © 2014-2019 Code Synthesis Ltd

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.9, February 2019

This revision of the document describes the build2 package manager 0.9.x series.

Table of Contents

.................. 1Preface

................ 11 Package Name

................ 12 Package Version

................. 43 Manifests

.............. 53.1 Manifest Format

.............. 83.2 Package Manifest

............... 93.2.1 name

.............. 93.2.2 version

.............. 93.2.3 project

.............. 103.2.4 priority

.............. 103.2.5 summary

.............. 103.2.6 license

............... 113.2.7 tags

............. 113.2.8 description

.............. 113.2.9 changes

............... 123.2.10 url

.............. 123.2.11 doc-url

.............. 123.2.12 src-url

............ 123.2.13 package-url

.............. 133.2.14 email

............ 133.2.15 package-email

............ 133.2.16 build-email

.......... 133.2.17 build-warning-email

.......... 133.2.18 build-error-email

.............. 133.2.19 depends

............. 163.2.20 requires

.............. 173.2.21 builds

........ 183.2.22 build-{include,exclude}

........ 193.3 Package List Manifest for pkg Repositories

.......... 193.3.1 sha256sum (list manifest)

......... 203.3.2 location (package manifest)

......... 203.3.3 sha256sum (package manifest)

........ 203.4 Package List Manifest for dir Repositories

.............. 203.4.1 location

.............. 213.4.2 fragment

............. 213.5 Repository Manifest

.............. 213.5.1 location

............... 223.5.2 type

............... 223.5.3 role

............... 223.5.4 trust

............... 223.5.5 url

............... 233.5.6 email

.............. 233.5.7 summary

............. 233.5.8 description

iRevision 0.9, February 2019 The build2 Package Manager

Table of Contents

.............. 243.5.9 certificate

............... 243.5.10 fragment

.............. 243.6 Repository List Manifest

.......... 253.7 Signature Manifest for pkg Repositories

............... 253.7.1 sha256sum

............... 253.7.2 signature

Revision 0.9, February 2019ii The build2 Package Manager

Table of Contents

Preface

This document describes bpkg, the build2 package dependency manager. For the package

manager command line interface refer to the bpkg(1) man pages.

1 Package Name

The bpkg package name can contain ASCII alphabetic characters ([a-zA-Z]), digits

([0-9]), underscores (_), plus/minus (+-), and dots/periods (.). The name must be at least

two characters long with the following additional restrictions:

1. It must start with an alphabetic character.

2. It must end with an alphabetic, digit, or plus character.

3. It must not be any of the following illegal names:

build
con prn aux nul
com1 com2 com3 com4 com5 com6 com7 com8 com9
lpt1 lpt2 lpt3 lpt4 lpt5 lpt6 lpt7 lpt8 lpt9

The use of the plus (+) character in package names is discouraged. Pluses are used in URL

encoding which makes specifying packages that contain pluses in URLs cumbersome.

The use of the dot (.) character in package names is discouraged except for distinguishing the

implementations of the same functionality for different languages. For example, libfoo and

libfoo.bash.

Package name comparison is case-insensitive but the original case must be preserved for

display, in file names, etc. The reason for case-insensitive comparison is Windows file names.

If the package is a library then it is strongly recommended that you start its package name

with the lib prefix, for example, libfoo. Some package repositories may make this a

requirement as part of their submission policy.

If a package (normally a library) supports usage of multiple major versions in the same

project, then it is recommended to append the major version number to the package name

starting from version 2.0.0, for example, libfoo (before 2.0.0), libfoo2, libfoo3

(3.Y.Z), etc.

2 Package Version

The bpkg package version format tries to balance the need of accommodating existing soft

ware versions on one hand and providing a reasonably straightforward comparison semantics

on another. For some background on this problem see deb-version(1) and the Semantic

Versioning specification.

1Revision 0.9, February 2019 The build2 Package Manager

Preface

http://semver.org/
http://semver.org/

Note also that if you are strating a new project that will use the build2 toolchain, then it is

strongly recommended that you use the standard versioning scheme which is a more strictly

defined subset of semanic versioning and that allows automation of many version manage

ment tasks. See version Module for details.

The bpkg package version has the following form:

[+<epoch>-]<upstream>[-<prerel>][+<revision>][#<iteration>]

The epoch part should be an integer. It can be used to change to a new versioning scheme that

would be incompatible with the old one. If not specified, then epoch defaults to 1 except for a

stub version (see below) in which case it defaults to 0. The explicit zero epoch can be used if

the current versioning scheme (for example, date-based) is known to be temporary.

The upstream part is the upstream software version that this package is based on. It can only

contain alpha-numeric characters and .. The . character is used to separate the version into

components.

The prerel part is the upstream software pre-release marker, for example, alpha, beta, candi

date, etc. Its format is the same as for upstream except for two special values: the absent

prerel (for example, 1.2.3) signifies the maximum or final release while the empty prerel

(for example, 1.2.3-) signifies the minimum or earliest possible release. The minimum

release is intended to be used for version constraints (for example, libfoo < 1.2.3-)

rather than actual releases.

The revision part should be an integer. It is used to version package releases that are based on

the same upstream versions. If not specified, then revision defaults to 0.

The iteration part is an integer. It is used internally by bpkg to automatically version modifi

cations to the packaging information (specifically, to package manifest and lockfile) in exter

nal packages that have the same upstream version and revision. As a result, the iteration

cannot not be specified by the user and is only shown in the bpkg output (for example, by

pkg-status command) in order to distinguish between package iterations with otherwise

identical versions. Note also that iteration is relative to the bpkg configuration. Or, in other

words, it is an iteration number of a package as observed by a specific configuration. As a

result, two configuration can "see" the same package state as two different iterations.

Package iterations are used to support package development during which requiring the devel

oper to manually increment the version or revision after each modification would be impracti

cal. This mechanism is similar to the automatic commit versioning provided by the standard

version except that it is limited to the packaging information but works for uncommitted

changes.

Version +0-0- (least possible version) is reserved and specifying it explicitly is illegal.

Explicitly specifying this version does not make much sense since libfoo < +0-0- is

always false and libfoo > +0-0- is always true. In the implementation this value is used

as a special empty version.

Revision 0.9, February 20192 The build2 Package Manager

2 Package Version

Version 0 (with a potential revision, for example, 0+1, 0+2) is used to signify a stub

package. A stub is a package that does not contain source code and can only be "obtained"

from other sources, for example, a system package manager. Note that at some point a stub

may be converted into a full-fledged package at which point it will be assigned a "real"

version. It is assumed that this version will always be greater than the stub version.

When displaying the package version or when using the version to derive the file name, the

default epoch value as well as zero revision and iteration values are omitted (even if they

were explicitly specified, for instance, in the package manifest). For example, +1-1.2.3+0
will be used as libfoo-1.2.3.

This versioning scheme and the choice of delimiter characters (.-+) is meant to align with

semantic versioning.

Some examples of versions:

0+1
+0-20180112
1.2.3
1.2.3-a1
1.2.3-b2
1.2.3-rc1
1.2.3-alpha1
1.2.3-alpha.1
1.2.3-beta.1
1.2.3+1
+2-1.2.3
+2-1.2.3-alpha.1+3
+2.2.3#1
1.2.3+1#1
+2-1.2.3+1#2

The version sorting order is epoch, upstream, prerel, revision, and finally, iteration. The

upstream and prerel parts are compared from left to right, one component at a time, as

described next.

To compare two components, first the component types are determined. A component that

only consists of digits is an integer. Otherwise, it is a string. If both components are integers,

then they are compared as integers. Otherwise, they are compared lexicographically and

case-insensitively. The reason for case-insensitive comparison is Windows file names.

A non-existent component is considered 0 if the other component is an integer and an empty

string if the other component is a string. For example, in 1.2 vs 1.2.0, the third component

in the first version is 0 and the two versions are therefore equal. As a special exception to this

rule, an absent prerel part is always greater than any non-absent part. And thus making the

final release always older than any pre-release.

This algorithm gives correct results for most commonly-used versioning schemes, for

example:

3Revision 0.9, February 2019 The build2 Package Manager

2 Package Version

1.2.3 < 12.2
1.alpha < 1.beta
20151128 < 20151228
2015.11.28 < 2015.12.28

One notable versioning scheme where this approach gives an incorrect result is hex numbers

(consider A vs 1A). The simplest work around is to convert such numbers to decimal. Alterna

tively, one can fix the width of the hex number and pad all the values with leading zeros, for

example: 00A vs 01A.

It is also possible to convert the upstream and prerel parts into a canonical representation that

will produce the correct comparison result when always compared lexicographically and as a

whole. This can be useful, for example, when storing versions in the database which would

otherwise require a custom collation implementation to obtain the correct sort order.

To convert one of these parts to its canonical representation, all its string components are

converted to the lower case while all its integer components are padded with leading zeros to

the fixed length of 16 characters, with all trailing zero-only components removed. Note that

this places an implementation limit on the length of integer components which should be

checked by the implementation when converting to the canonical representation. The 16 char

acters limit was chosen to still be able to represent (with some spare) components in the

YYYYMMDDhhmmss form while not (visually) bloating the database too much. As a special

case, the absent prerel part is represented as ~. Since the ASCII code for ~ is greater than any

other character that could appear in prerel, such a string will always be greater than any other

representation. The empty prerel part is represented as an empty string.

Note that because it is no possible to perform a reverse conversion without the possibility of

loss (consider 01.AA.BB), the original parts may also have to be stored, for example, for

display, to derive package archive names, etc.

In quite a few contexts the implementation needs to ignore the revision and/or iteration parts.

For example, this is needed to implement the semantics of newer revisions/iterations of pack

ages replacing their old ones since we do not keep multiple revisions/iterations of the same

upstream version in the same respository. As a result, in the package object model, we have a

version key as just {epoch, upstream, prerel} but also store the package revision and iteration

so that it can be shown it to the user, etc.

3 Manifests

This chapter describes the general manifest file format as well as the concrete manifests used

by bpkg.

Currently, three manifests are defined: package manifest, repository manifest, and signature

manifest. The former two manifests can also be combined into a list of manifests to form the

list of available packages and the description of a repository, respectively.

Revision 0.9, February 20194 The build2 Package Manager

3 Manifests

3.1 Manifest Format

The manifest format is a UTF-8 encoded text containing a list of name-value pairs in the

form:

<name>: <value>

For example:

name: libfoo
version: 1.2.3

The name can contain any characters except : and whitespaces. Newline terminates the pair

unless escaped with \ (see below). Leading and trailing whitespaces before and after name

and value are ignored except in the multi-line mode (see below).

If, the first non-whitespace character on the line is #, then the rest of the line is treated as a

comment and ignored except if the preceding newline was escaped or in the multi-line mode

(see below). For example:

This is a comment.
short: This is #not a comment
long: Also \
#not a comment

The first name-value pair in the manifest file should always have an empty name. The value

of this special pair is the manifest format version. The version value shall use the default (that

is, non-multi-line) mode and shall not use any escape sequences. Currently it should be 1, for

example:

: 1
name: libfoo
version: 1.2.3

Any new name that is added without incrementing the version must be optional so that it can

be safely ignored by older implementations.

The special empty name pair can also be used to separate multiple manifests. In this case the

version may be omitted in the subsequent manifests, for example:

: 1
name: libfoo
version: 1.2.3
:
name: libbar
version: 2.3.4

To disable treating of a newline as a name-value pair terminator we can escape it with \. Note

that \ is only treated as an escape sequence when followed by a newline and both are simply

removed from the stream (as opposed to being replaced which a space). To enter a literal \ at

the end of the value, use the \\ sequence. For example:

5Revision 0.9, February 2019 The build2 Package Manager

3.1 Manifest Format

description: Long text that doesn’t fit into one line \
so it is continued on the next line.

windows-path: C:\foo\bar\\

Notice that in the final example only the last \ needs special handling since it is the only one

that is followed by a newline.

One may notice that in this newline escaping scheme a line consisting of just \ followed by a

newline has no use, except, perhaps, for visual presentation of, arguably, dubious value. For

example, this representation:

description: First line. \
\
Second line.

Is semantically equivalent to:

description: First line. Second line.

As a result, such a sequence is "overloaded" to provide more useful functionality in two ways:

Firstly, if : after the name is immediately followed (ignoring whitespaces) by \ and a

newline, then it signals the start of the multi-line mode. In this mode all subsequent newlines

and # are treated as ordinary characters rather than value terminators or comments until a line

consisting of just \ and a newline (the multi-line mode terminator). For example:

description:\
First paragraph.
#
Second paragraph.
\

Expressed as a C-string, the value in the above example is:

"First paragraph.\n#\nSecond paragraph."

If we didn’t expect to ever need to specify a name with an empty value, then an empty value

could have turned on the multi-line mode, for example:

description:
First paragraph.
#
Second paragraph.
\

There are two reasons we don’t do this: we don’t want to close the door on empty values and

we want a more explicit "introductor" for the multi-line mode since it is quite different

compared to the simple mode.

Note that in the multi-line mode we can still use newline escaping to split long lines, for

example:

Revision 0.9, February 20196 The build2 Package Manager

3.1 Manifest Format

description:\
First paragraph that doesn’t fit into one line \
so it is continued on the next line.
Second paragraph.
\

In the simple (that is, non-multi-line) mode, the sole \ and newline sequence is overloaded to

mean a newline. So the previous example can also be represented like this:

description: First paragraph that doesn’t fit into one \
line so it is continued on the next line.\
\
Second paragraph.

Note that the multi-line mode can be used to capture a value with leading and/or trailing

whitespaces, for example:

description:\
 test

\

The C-string representing this value is:

" test\n"

EOF can be used instead of a newline to terminate both simple and multi-line values. For

example the following representation results in the same value as in the previous example.

description:\
 test

<EOF>

By convention, names are all in lower case and multi-word names are separated with -. Note

that names are case-sensitive.

Also by convention, the following name suffixes are used to denote common types of values:

-file
-url
-email

For example:

description: Inline description
description-file: README
package-url: http://www.example.com
package-email: john@example.com

Other common name suffixes (such as -feed) could be added later.

Generally, unless there is a good reason not to, we keep values lower-case (for example,

requires values such as c++11 or linux). An example where we use upper/mixed case

would be license; it seems unlikely gplv2 would be better than GPLv2.

7Revision 0.9, February 2019 The build2 Package Manager

3.1 Manifest Format

A number of name-value pairs described below allow for the value proper to be optionally

followed by ; and a comment. Such comments serve as additional documentation for the user

and should be full sentence(s), that is start with a capital letter and end with a period. Note

that unlike #-style comments which are ignored, these comments are considered to be part of

the value. For example:

email: foo-users@example.com ; Public mailing list.

It is recommended that you keep comments short, single-sentence. Note that non-comment

semicolons in such values have to be escaped with a backslash, for example:

url: http://git.example.com/?p=foo\;a=tree

In the manifest specifications described below optional components are enclosed in square

brackets ([]). If the name is enclosed in [] then the name-value pair is optional, otherwise –

required. For example:

name: <name>
license: <licenses> [; <comment>]
[description]: <text>

In the above example name is required, license has an optional component (comment),

and description is optional.

In certain situations (for example, shell scripts) it can be easier to parse the binary manifest

representation. The binary representation does not include comments and consists of a

sequence of name-value pairs in the following form:

<name>:<value>\0

That is, the name and the value are separated by a colon and each pair (including the last) is

terminated with the NUL character. Note that there can be no leading or trailing whitespace

characters around the name and any whitespaces after the colon and before the NUL termina

tor are part of the value. Finally, the manifest format versions are always explicit (that is, not

empty) in binary manifest lists.

3.2 Package Manifest

The package manifest (the manifest file found in the package’s root directory) describes a

bpkg package. The manifest synopsis is presented next followed by the detailed description

of each value in subsequent sections.

The subset of the values up to and including license constitute the package manifest

header. Note that the header is a valid package manifest since all the other values are optional.

There is also no requirement for the header values to appear first or to be in a specific order.

In particular, in a full package manifest they can be interleaved with non-header values.

Revision 0.9, February 20198 The build2 Package Manager

3.2 Package Manifest

name: <name>
version: <version>
[project]: <name>
[priority]: <priority> [; <comment>]
summary: <text>
license: <licenses> [; <comment>]

[tags]: <tags>
[description]: <text>
[description-file]: <path> [; <comment>]
[changes]: <text>
[changes-file]: <path> [; <comment>]

[url]: <url> [; <comment>]
[doc-url]: <url> [; <comment>]
[src-url]: <url> [; <comment>]
[package-url]: <url> [; <comment>]

[email]: <email> [; <comment>]
[package-email]: <email> [; <comment>]
[build-email]: <email> [; <comment>]
[build-warning-email]: <email> [; <comment>]
[build-error-email]: <email> [; <comment>]

[depends]: [?][*] <alternatives> [; <comment>]
[requires]: [?] [<alternatives>] [; <comment>]

[builds]: <class-expr> [; <comment>]
[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]

3.2.1 name

name: <name>

The package name. See Package Name for the package name format description. Note that the

name case is preserved for display, in file names, etc.

3.2.2 version

version: <version>

The package version. See Package Version for the version format description. Note that the

version case is preserved for display, in file names, etc.

3.2.3 project

[project]: <name>

The project this package belongs to. The project name has the same restrictions as the package

name (see Package Name for details) and its case is preserved for display, in directory names,

etc. If unspecified, then the project name is assumed to be the same as the package name.

Projects are used to group related packages together in order to help with organization and

discovery in repositories. For example, packages hello, libhello, and libhello2
could all belong to project hello. By convention, projects of library packages are named

9Revision 0.9, February 2019 The build2 Package Manager

3.2.1 name

without the lib prefix.

3.2.4 priority

[priority]: <priority> [; <comment>]

<priority> = security | high | medium | low

The release priority (optional). As a guideline, use security for security fixes, high for

critical bug fixes, medium for important bug fixes, and low for minor fixes and/or feature

releases. If not specified, low is assumed.

3.2.5 summary

summary: <text>

The short description of the package.

3.2.6 license

license: <licenses> [; <comment>]

<licenses> = <license> [, <license>]*

The package lincense. The format is a comma-separated list of license names under which this

package is distributed. This list has the AND semantics, that is, the user must comply with all

the licenses listed. To capture alternative licensing options use multiple license values, for

example:

license: LGPLv2, MIT
license: BSD

In the above example, the package can be used either under the BSD license or both LGPLv2

and MIT.

For complex licensing schemes it is recommended to add comments as an aid to the user, for

example:

license: LGPLv2, MIT ; If linking with GNU TLS.
license: BSD ; If linking with OpenSSL.

To assist automated processing, the following pre-defined values should be used for the

common licenses:

MIT
GPLv2
GPLv3
LGPLv2
LGPLv3
ASLv1 ; Apache License 1.0.
ASLv1.1 ; Apache License 1.1.
ASLv2 ; Apache License 2.0.
BSD ; BSD 3-clause.
BSD-Original ; BSD original.

Revision 0.9, February 201910 The build2 Package Manager

3.2.4 priority

public domain
available source ; Not free software/open source.
proprietary

An example of automated processing would be filtering for non-copyleft licensed packages.

3.2.7 tags

[tags]: <tags>

<tags> = <tag> [, <tag>]*

The package tags (optional). The format is a comma-separated list of words that describe this

package.

Originally, support for multi-word tags were considered, however this quickly degenerated

into quite a complex functionality. In particular, in such a case we should probably treat

multi-word tags as if the single word as well as shorter, multi-word derivations were also

mentioned. That is, "xml pull parser" should be equivalent to "xml pull parser, xml pull, xml

parser, pull parser, xml, pull, parser".

On the user side, if exact phrase matches are favored, then this serves as an encouragement to

come up with ever more elaborate multi-word tags to "cover" as much ground as possible. For

example, "streaming c++ xml pull parser".

As a result, we will start simple and only allow single-word tags.

3.2.8 description

[description]: <text>
[description-file]: <path> [; <comment>]

The detailed description of the package. It can be provided either inline as a text fragment or

by referring to a file within a package (e.g., README), but not both.

In the web interface (brep) the description is displayed as pre-formatted plain text. We could

use the comment to "hint" at the file format.

3.2.9 changes

[changes]: <text>
[changes-file]: <path> [; <comment>]

The description of changes in the release.

The tricky aspect is what happens if the upstream release stays the same (and has, say, a

NEWS file to which we point) but we need to make another package release, for example, to

apply a critical patch.

11Revision 0.9, February 2019 The build2 Package Manager

3.2.7 tags

Multiple changes values can be present which are all concatenated in the order specified,

that is, the first value is considered to be the most recent (similar to ChangeLog and NEWS
files). For example:

changes: 1.2.3-2: applied upstream patch for critical bug bar
changes: 1.2.3-1: applied upstream patch for critical bug foo
changes-file: NEWS

Or:

changes:\
1.2.3-2
 - applied upstream patch for critical bug bar
 - regenerated documentation

1.2.3-1
 - applied upstream patch for critical bug foo
\
changes-file: NEWS

In the web interface (brep) the changes are displayed as pre-formatted plain text, similar to

the package description.

3.2.10 url

[url]: <url> [; <comment>]

The project home page URL.

3.2.11 doc-url

[doc-url]: <url> [; <comment>]

The project documentation URL.

3.2.12 src-url

[src-url]: <url> [; <comment>]

The project source repository URL.

3.2.13 package-url

[package-url]: <url> [; <comment>]

The package home page URL. If not specified, then assumed to be the same as url. It only

makes sense to specify this value if the project and package are maintained separately.

Revision 0.9, February 201912 The build2 Package Manager

3.2.10 url

3.2.14 email

[email]: <email> [; <comment>]

The project email address. For example, a support mailing list.

3.2.15 package-email

[package-email]: <email> [; <comment>]

The package email address. If not specified, then assumed to be the same as email. It only

makes sense to specify this value if the project and package are maintained separately.

3.2.16 build-email

[build-email]: <email> [; <comment>]

The build notification email address. It is used to send build result notifications by automated

build bots. If none of the build-*email values are specified, then it is assumed to be the

same as package-email. If it is specified but empty, then no build result notifications for

this package are sent by email.

3.2.17 build-warning-email

[build-warning-email]: <email> [; <comment>]

The build warning notification email address. Unlike build-email, only build warning

and error notifications are sent to this email.

3.2.18 build-error-email

[build-error-email]: <email> [; <comment>]

The build error notification email address. Unlike build-email, only build error notifica

tions are sent to this email.

3.2.19 depends

[depends]: [?][*] <alternatives> [; <comment>]

<alternatives> := <dependency> [’|’ <dependency>]*
<dependency> := <name> [<constraint>]
<constraint> := <comparison> | <shortcut> | <range>
<comparison> := (’==’ | ’>’ | ’<’ | ’>=’ | ’<=’) <version>
<shortcut> := (’^’ | ’~’) <version>
<range> := (’(’ | ’[’) <version> <version> (’)’ | ’]’)

The prerequisite packages. If the depends value start with *, then it is a build-time prerequi

site. Otherwise it is run-time.

13Revision 0.9, February 2019 The build2 Package Manager

3.2.14 email

Most of the build-time prerequisites are expected to be tools such as code generator, so you

can think of * as the executable mark printed by ls. An important difference between the two

kind of dependencies is that in case of cross-compilation a build-time dependency must be

built for the build machine, not the target.

Two special build-time dependency names are recognized and checked in an ad hoc manner:

build2 (the build2 build system) and bpkg (the build2 package manager). This allows

us to specify the required build system and package manager versions, for example:

depends: * build2 >= 0.6.0
depends: * bpkg >= 0.6.0

Each depends value can specify multiple packages with the OR semantics. While multiple

depends values are used to specify multiple packages with the AND semantics. A value that

starts with ? is a conditional prerequisite. Whether such a prerequisite will be in effect can

only be determined at the package configuration time. It is recommended that you provide a

comment for each conditional prerequisite as an aid to the user. For example:

depends: libz
depends: libfoo ~1.2.0 ; Only works with libfoo 1.2.*.
depends: libgnutls >= 1.2.3 | libopenssl >= 2.3.4
depends: ? libboost-regex >= 1.52.0 ; Only if no C++11 <regex>.
depends: ? libqtcore >= 5.0.0 ; Only if GUI is enabled.

It is recommended that you specify unconditional dependencies first with simple (no alterna

tives) dependencies leading each set.

The optional version constraint can be specified using comparison operators, shortcut (to

range) operators, and ranges.

The shortcut operators can only be used with standard versions (a semantic version without

the pre-release part is a standard version). They are equivalent to the following ranges. The

X.Y.Z- version signifies the earliest pre-release in the X.Y.Z series; see Package Version

for details.

~X.Y.Z [X.Y.Z X.Y+1.0-)

^X.Y.Z [X.Y.Z X+1.0.0-) if X > 0
^0.Y.Z [0.Y.Z 0.Y+1.0-) if X == 0

That is, the tilde (~) constraint allows upgrades to any further patch version while the caret

(^) constraint – also to any further minor version.

Zero major version component is customarily used during early development where the minor

version effectively becomes major. As a result, the tilde constraint has special semantics for

this case.

Note that the shortuct operators can only be used with the complete, three-component versions

(X.Y.Z with the optional pre-release part per the standard version). Specifically, there is no

support for special ^X.Y or ~X semantics offered by some package manager – if desired,

such functionality can be easily achieved with ranges. Also, the 0.0.Z version is not consid

Revision 0.9, February 201914 The build2 Package Manager

3.2.19 depends

ered special except as having zero major component for the tilde semantics discussed above.

Note also that pre-releases do not required any special considerations when used with the

shortcut operators. For example, if package libfoo is usable starting with the second beta of

the 2.0.0 release, then our constraint could be expressed as:

depends: libfoo ^2.0.0-b.2

Internally shortucts and comparisons can be represented as ranges (that is, [v, v] for ==,

(v, inf) for >, etc). However, for display and serialization such representations should be

converted back to simple operators. While it is possible that the original manifest specified

equality or shortucts as full ranges, it is acceptable to display/serialize them as simpler opera

tors.

Instead of a specific version, the constraint can be specified in terms of the dependent

package’s version (that is, its version value) using the special $ value. A depends value

that contains $ is called incomplete. This mechanism is primarily useful when developing

related packages that should track each other’s versions exactly or closely. For example:

name: sqlite3
version: 3.18.2
depends: libsqlite3 == $

In comparison operators and ranges the $ value is replaced with the dependent version ignor

ing the revision. For shortcut operators, the dependent version must be a standard version and

the following additional processing is applied depending on whether the version is a release,

final pre-release, or a snapshot pre-release.

1. For a release we set the min version patch to zero. For ^ we also set the minor version to

zero, unless the major version is zero (reduces to ~). The max version is set according to

the standard shortcut logic. For example, ~$ is completed as follows:

1.2.0 -> [1.2.0 1.3.0-)
1.2.1 -> [1.2.0 1.3.0-)
1.2.2 -> [1.2.0 1.3.0-)

And ^$ is completed as follows:

1.0.0 -> [1.0.0 2.0.0-)
1.1.1 -> [1.0.0 2.0.0-)

2. For a final pre-release the key observation is that if the patch component for ~ or minor

and patch components for ^ are not zero, then that means there has been a compatible

release and we treat this case the same as release, ignoring the pre-release part. If,

however, it/they are zero, then that means there may yet be no final release and we have

to start from the first alpha. For example, for the ~$ case:

1.2.0-a.1 -> [1.2.0-a.1 1.3.0-)
1.2.0-b.2 -> [1.2.0-a.1 1.3.0-)
1.2.1-a.1 -> [1.2.0 1.3.0-)
1.2.2-b.2 -> [1.2.0 1.3.0-)

15Revision 0.9, February 2019 The build2 Package Manager

3.2.19 depends

And for the ^$ case:

1.0.0-a.1 -> [1.0.0-a.1 2.0.0-)
1.0.0-b.2 -> [1.0.0-a.1 2.0.0-)
1.0.1-a.1 -> [1.0.0 2.0.0-)
1.1.0-b.2 -> [1.0.0 2.0.0-)

3. For a snapshot pre-release we distinguish two cases: a patch snapshot (the patch compo

nent is not zero) and a major/minor snapshot (the patch component is zero). For the patch

snapshot case we assume that it is (most likely) developed independently of the depen

dency and we treat it the same as the final pre-release case. For example, if the dependent

version is 1.2.1-a.0.nnn, the dependency could be 1.2.0 or 1.2.2 (or some

where in-between).

For the major/minor snapshot we assume that all the packages are developed in the lock

step and have the same X.Y.0 version. In this case we make the range start from the

earliest possible version in this "snapshot series" and end before the final pre-release. For

example (in this case ~ and ^ are treated the same):

1.2.0-a.0.nnn -> [1.2.0-a.0.1 1.2.0-a.1)
2.0.0-b.2.nnn -> [2.0.0-b.2.1 2.0.0-b.3)

3.2.20 requires

[requires]: [?] [<alternatives>] [; <comment>]

<alternatives> := <requirement> [’|’ <requirement>]*
<requirement> := <id> | <dependency>

The package requirements (other than other packages). Such requirements are normally

checked during package configuration by the build system and the only purpose of capturing

them in the manifest is for documentation. Similar to depends, a value that starts with ? is a

conditional requirement. For example:

requires: linux | windows | macosx
requires: c++11
requires: ? ; VC 15 or later if targeting Windows.
requires: ? ; libc++ if using Clang on Mac OS.

Notice that in the last two cases the id is omitted altogether with only the comment specifying

the requirement.

Note that requires should also be used to specify dependencies on external libraries, that

is, the ones not packaged or not in the repository. In this case it may make sense to also

specify the version constraint. For example:

requires: zlib >= 1.2.0 ; Most systems already have it or get from zlib.net.

It is recommended that you specify unconditional requirements first with simple (no alterna

tives) requirements leading each set.

Revision 0.9, February 201916 The build2 Package Manager

3.2.20 requires

To assist automated processing, the following pre-defined ids should be used for the common

requirements:

c++98
c++03
c++11
c++14
c++17
c++20
c++23

posix
linux
macos
freebsd
windows

gcc[_X.Y.Z] ; For example: gcc_6, gcc_4.9, gcc_5.0.0
clang[_X.Y] ; For example: clang_6, clang_3.4, clang_3.4.1
msvc[_NU] ; For example: msvc_14, msvc_15u3

3.2.21 builds

[builds]: [<class-uset> ’:’] [<class-expr>] [; <comment>]

<class-uset> := <class-name> [<class-name>]*
<class-expr> := <class-term> [<class-term>]*
<class-term> := (’+’|’-’|’&’)[’!’](<class-name> | ’(’ <class-expr> ’)’)

The package build configurations. They specify the build configuration classes the package

should or should not be built for by automated build bots. For example:

builds: -windows

Build configurations can belong to multiple classes with their names and semantics varying

between different build bot deployments. However, the pre-defined none, default, and

all classes are always provided. If no builds value is specified in the package manifest,

then the default class is assumed.

A build configuration class can also derive from another class in which case configurations

that belong to the derived class are treated as also belonging to the base class (or classes,

recursively). See the Build Configurations page of the build bot deployment for the list of

available build configurations and their classes.

The builds value consists of an optional underlying class set (<class-uset>) followed

by a class set expression (<class-expr>). The underlying set is a space-separated list of

class names that define the set of build configurations to consider. If not specified, then all the

configurations belonging to the default class are assumed. The class set expression can

then be used to exclude certain configurations from this initial set.

The class expression is a space-separated list of terms that are evaluated from left to right. The

first character of each term determines whether the build configuration that belong to its set

are added to (+), subtracted from (-), or intersected with (&) the current set. If the second

17Revision 0.9, February 2019 The build2 Package Manager

3.2.21 builds

character in the term is !, then its set of configuration is inverted against the underlying set.

The term itself can be either the class name or a parenthesized expression. Some examples:

builds: none ; None.
builds: all ; All.
builds: default legacy ; Default and legacy.
builds: -windows ; Default except Windows.
builds: all : -windows ; All except Windows.
builds: all : &gcc ; All with GCC only.
builds: all : &gcc-8+ ; All with GCC 8 and up only.
builds: gcc : -optimized ; GCC without optimization.
builds: gcc : &(+linux +macos) ; GCC on Linux or Mac OS.

Notice that the colon and parentheses must be separated with spaces from both preceding and

following terms.

Multiple builds values are evaluated in the order specified and as if they were all part of a

single expression. Only the first value may specify the underlying set. The main reason for

having multiple values is to provide individual reasons (as the builds value comments) for

different parts of the expression. For example:

builds: default experimental ; Only modern compilers are supported.
builds: -gcc ; GCC is not supported.
builds: -clang ; Clang is not supported.

The builds value comments are used by the web interface (brep) to display the reason for

the build configuration exclusion.

After evaluating all the builds values, the final configuration set can be further fine-tuned

using the build-{include,exclude} patterns.

3.2.22 build-{include,exclude}

[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]

The package build inclusions and exclusions. The build-include and build-exclude
values further reduce the configuration set produced by evaluating the builds values. The

config and target values are filesystem wildcard patterns which are matched against the build

configuration names and target names (see the bbot documentation for details). In particular,

the * wildcard matches zero or more characters within the name component while the **
sequence matches across the components. Plus, wildcard-only pattern components match

absent name components. For example:

build-exclude: windows** # matches windows_10-msvc_15
build-exclude: macos*-gcc** # matches macos_10.13-gcc_8.1-O3
build-exclude: linux-gcc*-* # matches linux-gcc_8.1 and linux-gcc_8.1-O3

The exclusion and inclusion patterns are applied in the order specified with the first match

determining whether the package will be built for this configuration and target. If none of the

patterns match (or none we specified), then the package is built.

Revision 0.9, February 201918 The build2 Package Manager

3.2.22 build-{include,exclude}

As an example, the following value will exclude 32-bit builds for the MSVC 14 compiler:

build-exclude: *-msvc_14**/i?86-** ; Linker crash.

As another example, the following pair of values will make sure that a package is only built

on Linux:

build-include: linux**
build-exclude: ** ; Only supported on Linux.

Note that the comment of the matching exclusion is used by the web interface (brep) to

display the reason for the build configuration exclusion.

3.3 Package List Manifest for pkg Repositories

The package list manifest (the packages.manifest file found in the pkg repository root

directory) describes the list of packages available in the repository. First comes a manifest that

describes the list itself (referred to as the list manifest). The list manifest synopsis is presented

next:

sha256sum: <sum>

After the list manifest comes a (potentially empty) sequence of package manifests. These

manifests shall not contain any *-file or incomplete depends values (such values should

be converted to their inline versions or completed, respectively) but must contain the follow

ing additional (to package manifest) values:

location: <path>
sha256sum: <sum>

The detailed description of each value follows in the subsequent sections.

3.3.1 sha256sum (list manifest)

sha256sum: <sum>

The SHA256 checksum of the repositories.manifest file (described below) that

corresponds to this repository. The sum value should be 64 characters long (that is, just the

SHA256 value, no file name or any other markers), be calculated in the binary mode, and use

lower-case letters.

This checksum is used to make sure that the repositories.manifest file that was

fetched is the same as the one that was used to create the packages.manifest file. This

also means that if repositories.manifest is modified in any way, then pack
ages.manifest must be regenerated as well.

19Revision 0.9, February 2019 The build2 Package Manager

3.3 Package List Manifest for pkg Repositories

3.3.2 location (package manifest)

location: <path>

The path to the package archive file relative to the repository root. It should be in the POSIX

representation.

if the repository keeps multiple versions of the package and places them all into the repository

root directory, it can get untidy. With location we allow for sub-directories.

3.3.3 sha256sum (package manifest)

sha256sum: <sum>

The SHA256 checksum of the package archive file. The sum value should be 64 characters

long (that is, just the SHA256 value, no file name or any other markers), be calculated in the

binary mode, and use lower-case letters.

3.4 Package List Manifest for dir Repositories

The package list manifest (the packages.manifest file found in the dir repository root

directory) describes the list of packages available in the repository. It is a (potentially empty)

sequence of manifests with the following synopsis:

location: <path>
[fragment]: <string>

The detailed description of each value follows in the subsequent sections. The fragment
value can only be present in a merged packages.manifest file for a multi-fragment

repository.

As an example, if our repository contained the src/ subdirectory that in turn contained the

libfoo and foo packages, then the corresponding packages.manifest file could look

like this:

: 1
location: src/libfoo/
:
location: src/foo/

3.4.1 location

location: <path>

The path to the package directory relative to the repository root. It should be in the POSIX

representation.

Revision 0.9, February 201920 The build2 Package Manager

3.4 Package List Manifest for dir Repositories

3.4.2 fragment

[fragment]: <string>

The repository fragment id this package belongs to.

3.5 Repository Manifest

The repository manifest (only used as part of the repository manifest list described below)

describes a pkg, dir, or git repository. The manifest synopsis is presented next followed

by the detailed description of each value in subsequent sections.

[location]: <uri>
[type]: pkg|dir|git
[role]: base|prerequisite|complement
[trust]: <fingerprint>
[url]: <url>
[email]: <email> [; <comment>]
[summary]: <text>
[description]: <text>
[certificate]: <pem>
[fragment]: <string>

See also the Repository Chaining documentation for further information @@ TODO.

3.5.1 location

[location]: <uri>

The repository location. The location can only and must be omitted for the base repository.

Since we got hold of its manifest, then we presumably already know the location of the base

repository. If the location is a relative path, then it is treated as relative to the base repository

location.

For the git repository type the relative location does not inherit the URL fragment from the

base repository. Note also that the remote git repository locations normally have the .git

extension that is stripped when a repository is cloned locally. To make the relative locations

usable in both contexts, the .git extension should be ignored if the local prerequisite reposi

tory with the extension does not exist while the one without the extension does.

While POSIX systems normally only support POSIX paths (that is, forward slashes only),

Windows is generally able to handle both slash types. As a result, it is recommended that

POSIX paths are always used in the location values, except, perhaps, if the repository is

explicitly Windows-only by, for example, having a location that is an absolute Windows path

with the drive letter. The bpkg package manager will always try to represent the location as a

POSIX path and only fallback to the native representation if that is not possible (for example,

there is a drive letter in the path).

21Revision 0.9, February 2019 The build2 Package Manager

3.5 Repository Manifest

3.5.2 type

[type]: pkg|dir|git

The repository type. The type must be omitted for the base repository. If the type is omitted

for a prerequisite/complement repository, then it is guessed from its location value as

described in bpkg-rep-add(1).

3.5.3 role

[role]: base|prerequisite|complement

The repository role. The role value can be omitted for the base repository only.

3.5.4 trust

[trust]: <fingerprint>

The repository fingerprint to trust. The trust value can only be specified for prerequisite

and complement repositories and only for repository types that support authentication

(currently only pkg). The fingerprint value should be an SHA256 repository fingerprint

represented as 32 colon-separated hex digit pairs. The repository in question is only trusted

for use as a prerequisite or complement of this repository. If it is also used by other reposito

ries or is added to the configuration by the user, then such uses cases are authenticated inde

pendently.

3.5.5 url

[url]: <url>

The repository’s web interface (brep) URL. It can only be specified for the base repository

(the web interface URLs for prerequisite/complement repositories can be extracted from their

respective manifests).

For example, given the following url value:

url: https://example.org/hello/

The package details page for libfoo located in this repository will be

https://example.org/hello/libfoo.

The web interface URL can also be specified as relative to the repository location (the loca
tion value). In this case url should start with two path components each being either . or

... If the first component is .., then the www, pkg or bpkg domain component, if any, is

removed from the location URL host, just like when deriving the repository name.

Similarly, if the second component is .., then the pkg or bpkg path component, if any, is

removed from the location URL path, again, just like when deriving the repository name.

Revision 0.9, February 201922 The build2 Package Manager

3.5.2 type

Finally, the version component is removed from the location URL path, the rest (after the

two ./.. components) of the url value is appended to it, and the resulting path is normal

ized with all remaining .. and . applied normally.

For examples, assuming repository location is:

https://pkg.example.org/test/pkg/1/hello/stable

The following listing shows some of the possible combinations (the <> marker is used to

highlight the changes):

./. -> https://pkg.example.org/test/pkg/hello/stable

../. -> https://< >example.org/test/pkg/hello/stable

./.. -> https://pkg.example.org/test/< >hello/stable

../.. -> https://< >example.org/test/< >hello/stable

././.. -> https://pkg.example.org/test/pkg/hello< >

../../../.. -> https://< >example.org/test< >

The rationale for the relative web interface URLs is to allow deployment of the same reposi

tory to slightly different configuration, for example, during development, testing, and public

use. For instance, for development we may use the https://example.org/pkg/ setup

while in production it becomes https://pkg.example.org/. By specifying the web

interface location as, say, ../., we can run the web interface at these respective locations

using a single repository manifest.

3.5.6 email

[email]: <email> [; <comment>]

The repository email address. It must and can only be specified for the base repository. The

email address is displayed by the web interface (brep) in the repository about page and could

be used to contact the maintainers about issues with the repository.

3.5.7 summary

[summary]: <text>

The short description of the repository. It must and can only be specified for the base reposi

tory.

3.5.8 description

[description]: <text>

The detailed description of the repository. It can only be specified for the base repository.

In the web interface (brep) the description is formatted into one or more paragraphs using

blank lines as paragraph separators. Specifically, it is not represented as <pre> so any kind

of additional plain text formatting (for example, lists) will be lost and should not be used in

the description.

23Revision 0.9, February 2019 The build2 Package Manager

3.5.6 email

3.5.9 certificate

[certificate]: <pem>

The X.509 certificate for the repository. It should be in the PEM format and can only be spec

ified for the base repository. Currently only used for the pkg repository type.

The certificate should contain the CN and O components in the subject as well as the email:

component in the subject alternative names. The CN component should start with name: and

continue with the repository name prefix/wildcard (without trailing slash) that will be used to

verify the repository name(s) that are authenticated with this certificate. See bpkg-reposi

tory-signing(1) for details.

If this value is present then the packages.manifest file must be signed with the corre

sponding private key and the signature saved in the signature.manifest file. See

Signature Manifest for details.

3.5.10 fragment

[fragment]: <string>

The repository fragment id this repository belongs to.

3.6 Repository List Manifest

@@ TODO See the Repository Chaining document for more information on the terminology

and semantics.

The repository list manifest (the repositories.manifest file found in the repository

root directory) describes the repository. It is a sequence of repository manifests consisting of

the base repository manifest (that is, the manifest for the repository that is being described) as

well as manifests for its prerequisite and complement repositories. The individual repository

manifests can appear in any order and the base repository manifest can be omitted.

The fragment values can only be present in a merged repositories.manifest file

for a multi-fragment repository.

As an example, a repository manifest list for the math/testing repository could look like

this:

math/testing
#
: 1
email: math-pkg@example.org
summary: Math package repository
:
role: complement
location: ../stable
:
role: prerequiste
location: https://pkg.example.org/1/misc/testing

Revision 0.9, February 201924 The build2 Package Manager

3.6 Repository List Manifest

Here the first manifest describes the base repository itself, the second manifest – a comple

ment repository, and the third manifest – a prerequisite repository. Note that the complement

repository’s location is specified as a relative path. For example, if the base repository loca

tion were:

https://pkg.example.org/1/math/testing

Then the completement’s location would be:

https://pkg.example.org/1/math/stable

3.7 Signature Manifest for pkg Repositories

The signature manifest (the signature.manifest file found in the pkg repository root

directory) contains the signature of the repository’s packages.manifest file. In order to

detect the situation where the downloaded signature.manifest and pack
ages.manifest files belong to different updates, the manifest contains both the checksum

and the signature (which is the encrypted checksum). We cannot rely on just the signature

since a mismatch could mean either a split update or tampering. The manifest synopsis is

presented next followed by the detailed description of each value in subsequent sections.

sha256sum: <sum>
signature: <sig>

3.7.1 sha256sum

sha256sum: <sum>

The SHA256 checksum of the packages.manifest file. The sum value should be 64

characters long (that is, just the SHA256 value, no file name or any other markers), be calcu

lated in the binary mode, and use lower-case letters.

3.7.2 signature

signature: <sig>

The signature of the packages.manifest file. It should be calculated by encrypting the

above sha256sum value with the repository certificate’s private key and then

base64-encoding the result.

25Revision 0.9, February 2019 The build2 Package Manager

3.7 Signature Manifest for pkg Repositories

	Preface
	1 Package Name
	2 Package Version
	3 Manifests
	3.1 Manifest Format
	3.2 Package Manifest
	3.2.1 name
	3.2.2 version
	3.2.3 project
	3.2.4 priority
	3.2.5 summary
	3.2.6 license
	3.2.7 tags
	3.2.8 description
	3.2.9 changes
	3.2.10 url
	3.2.11 doc-url
	3.2.12 src-url
	3.2.13 package-url
	3.2.14 email
	3.2.15 package-email
	3.2.16 build-email
	3.2.17 build-warning-email
	3.2.18 build-error-email
	3.2.19 depends
	3.2.20 requires
	3.2.21 builds
	3.2.22 build-{include,exclude}

	3.3 Package List Manifest for pkg Repositories
	3.3.1 sha256sum (list manifest)
	3.3.2 location (package manifest)
	3.3.3 sha256sum (package manifest)

	3.4 Package List Manifest for dir Repositories
	3.4.1 location
	3.4.2 fragment

	3.5 Repository Manifest
	3.5.1 location
	3.5.2 type
	3.5.3 role
	3.5.4 trust
	3.5.5 url
	3.5.6 email
	3.5.7 summary
	3.5.8 description
	3.5.9 certificate
	3.5.10 fragment

	3.6 Repository List Manifest
	3.7 Signature Manifest for pkg Repositories
	3.7.1 sha256sum
	3.7.2 signature

